OMPP 2

Les relations locales de l'électrostatique

École Centrale Pékin

2019-2020

Table des matières

1	L of	L'operateur divergence			
	1.1	Définition intrinsèque			
	1.2	Propriétés			
	1.3	Expression dans les différents systèmes de coordonnées			
	1.4	Théorème de Green-Ostrogradski			
	1.5	Représentation visuelle de la divergence			
2	Équation de Maxwell-Gauss - Théorème de Gauss				
	$2.\dot{1}$	Relation locale : équation de Maxwell-Gauss			
	2.2	Relation intégrale : théorème de GAUSS			
3	L'opérateur laplacien scalaire				
	3.1	Définition			
	3.2	Propriétés			
	3.3	Expressions dans les différents systèmes de coordonnées			
4	Équation locale potentiel électrostatique - source				
	-	Équation de Poisson			
		Cas particulier : équation de LAPLACE			

1 L'opérateur divergence

1.1 Définition intrinsèque

Le flux sortant d'un champ vectoriel $\vec{A}(M,t)$ à travers une surface fermée élémentaire entourant un volume $d\tau$ au voisinage du point M, peut s'écrire :

$$d\phi = \operatorname{div}\vec{A}(M,t) . d\tau$$

ce qui définit de manière intrinsèque a l'opérateur divergence.

a. Définir de manière intrinsèque un opérateur consiste à ne pas faire intervenir de base de projection dans sa définition.

On peut noter $\operatorname{div} \overrightarrow{A}(M,t)$ ou $\overrightarrow{\nabla}.\overrightarrow{A}$. Dans ce dernier cas, on dit "nabla scalaire \overrightarrow{A} " plutôt que "divergence de \overrightarrow{A} ".

1.2 Propriétés

L'opérateur divergence transforme le champvectoriel $\left\{ \vec{A}(M,t) \ \mathbf{où} \ M \in \mathcal{D} \ \mathbf{et} \ t \in \mathcal{I} \right\} \ \mathbf{en} \ \mathbf{le} \ \mathit{champ scalaire} \ \left\{ \mathrm{d}iv \vec{A}(M,t) \ \mathbf{où} \ M \in \mathcal{D} \ \mathbf{et} \ t \in \mathcal{I} \right\}$ 2 L'opérateur divergence est un opérateur linéaire.

Démontrer la linéarité de l'opérateur divergence

$$d\phi_{\lambda \vec{A} + \vec{B}\vec{B}} = (\lambda \vec{A} + \vec{B}\vec{B}) d\vec{S} = \lambda \vec{A} \cdot \vec{A} \cdot \vec{B} + \vec{B} \vec{B} d\vec{S}$$

$$= \lambda d\phi_{\vec{A}} + \vec{B} d\phi_{\vec{B}}$$

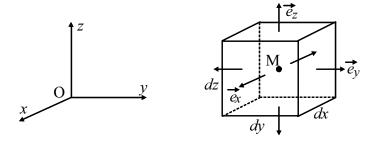
Ainsi
$$\operatorname{div}(\lambda \vec{A} + \beta \vec{B}) = \frac{d\phi_{\lambda \vec{A} + \beta \vec{B}}}{dZ} = \frac{\lambda d\phi_{\vec{A}} + \beta d\phi_{\vec{B}}}{dZ} = \lambda \operatorname{div} \vec{A} + \beta \operatorname{div} \vec{B}$$

l'opérateur divergence est donc linéaire

1.3 Expression dans les différents systèmes de coordonnées

■ Coordonnées cartésiennes

Preuve (hors-examen) : Considérons un parallèpipède élémentaire de centre M(x, y, z), de cotés dx, dy, dz.



Au premier ordre, le flux sortant d'un champ \vec{A} s'écrit :

$$\begin{split} d\phi &= A_x(x + \frac{dx}{2}, y, z, t)\vec{e}_x \cdot dy \, dz \vec{e}_x - A_x(x - \frac{dx}{2}, y, z, t)\vec{e}_x \cdot dy \, dz \vec{e}_x \\ &+ A_y(x, y + \frac{dy}{2}, z, t)\vec{e}_y \cdot dx \, dz \vec{e}_y - A_y(x, y - \frac{dy}{2}, z, t)\vec{e}_y \cdot dx \, dz \vec{e}_y \\ &+ A_z(x, y, z + \frac{dz}{2}, t)\vec{e}_z \cdot dx \, dy \vec{e}_z - A_z(x, y, z - \frac{dz}{2}, t)\vec{e}_z \cdot dx \, dy \vec{e}_y \\ &= \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right) \cdot dx \, dy \, dz \end{split}$$

En divisant par $d\tau = dx \, dy \, dz$, on en déduit :

$$div\vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

 \bigcirc Montrer que $\overrightarrow{\nabla}.\overrightarrow{A}$ s'écrit bien de la même façon en coordonnées cartésiennes.

$$\overrightarrow{\nabla} \cdot \overrightarrow{A} = \begin{vmatrix} 3 \\ 5 \\ \times \end{vmatrix} \cdot \begin{vmatrix} A \\ A \\ A \end{vmatrix} = \frac{3A_x}{3x} + \frac{3A_y}{3y} + \frac{3A_3}{3y}$$

$$\begin{vmatrix} A_y \\ 2 \\ 3 \\ \end{vmatrix}$$

$$\begin{vmatrix} A_y \\ A_y \\ \end{vmatrix}$$

$$\begin{vmatrix} A_3 \\ 3 \\ \end{vmatrix}$$

<u>Attention</u>: **Ce calcul n'est valable qu'en coordonnées cartésiennes!** En coordonnées cylindriques et sphériques on ne peut pas simplement effectuer le produit scalaire entre l'opérateur Nabla et le champ de vecteur pour calculer la divergence.

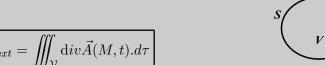
■ Autres systèmes de coordonnées

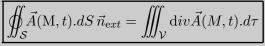
Si vous deviez avoir besoin de l'expression de la divergence d'un champ de vecteurs en coordonnées cylindriques ou sphériques, l'énoncé de l'exercice vous les rappellerait.

Coordonne	ées cylindriques	Coordonnées sphériques
$\overrightarrow{A}(M,t) =$	$\begin{pmatrix} A_r(r,\theta,z,t) \\ A_{\theta}(r,\theta,z,t) \\ A_{\theta}(r,\theta,z,t) \end{pmatrix}$	$\overrightarrow{A}(M,t) = \left(egin{array}{c} A_r(r, heta,arphi,t) \ A_{ heta}(r, heta,arphi,t) \end{array} ight)$
	$\frac{A_z(r,\theta,z,t)}{\partial r} + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z}$	$ \frac{A_{\varphi}(r,\theta,\varphi,t)}{div\overrightarrow{A}(M,t) = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_{\theta} \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi} }$

1.4 Théorème de Green-Ostrogradski

Soit un volume $\mathcal V$ délimité par une surface fermée $\mathcal S$. On peut exprimer le flux de $\vec A(M,t)$ à travers $\mathcal S$ en intégrant $\mathrm{d}iv\vec A(M,t)$ sur le volume $\mathcal V$:





1.5 Représentation visuelle de la divergence

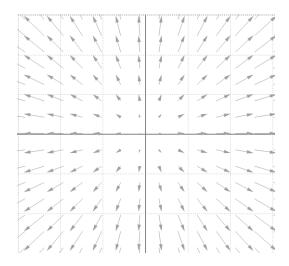


FIGURE 1 – Exemple d'un champ de vecteurs à divergence non nulle

2 Équation de Maxwell-Gauss - Théorème de Gauss

2.1 Relation locale : équation de Maxwell-Gauss

L'équation de Maxwell-Gauss est un des quatres postulats fondamentaux de l'électromagnétisme, les équations de Maxwell. Elle relie a le champ électrique \vec{E} et la densité volumique de charges ρ :

$$\overrightarrow{div}\overrightarrow{E}(M) = \frac{\rho(M)}{\varepsilon_0}$$

a. Cette équation est valable en régime statique $\underline{\operatorname{et}}$ en régime quelconque

2.2 Relation intégrale : théorème de Gauss

Soit (S) une surface fermée ^a. Le théorème de Gauss affirme que le flux du champ électrostatique créé par une distribution de charges est égal à la charge contenue à lintérieur de (S) que divise ε_0 :

$$\oint_{P \in (\mathcal{S})} \overrightarrow{E}(P) . d\overrightarrow{S}_{ext}(P) = \frac{Q_{int}}{\varepsilon_0}$$

Le Théorème de Gauss est une conséquence de la relation de Maxwell-Gauss

a. Rappelons qu'une surface fermée est une surface engendrant un volume.

Démontrer le théorème de Gauss

On a div
$$\vec{E}(n) = \frac{\rho(n)}{E_o}$$
 donc

$$\iint_V div \vec{E}(n) dz = \iint_V \frac{\rho(n)}{E_o} dz = \frac{Q_{int}}{E_o}$$

Par application du théorème de

Green-Ostrogradski $\iint_V div \vec{E}(n) dz = \iint_{S_V} \vec{E}'(n) d\vec{S}(n)$

Donc $\iint_V \vec{E}'(n) d\vec{S}(n) = \frac{Q_{int}}{E_o}$

3 L'opérateur laplacien scalaire

3.1 Définition

Soit $\{f(M,t) \text{ où } M \in \mathcal{D} \text{ et } t \in \mathcal{I}\}$ un champ scalaire. On définit l'opérateur laplacien scalaire de manière intrinsèque comme :

$$\Delta f(M,t) \triangleq div\left(\overrightarrow{grad}f(M,t)\right)$$

 $\Delta f(M,t)$ se lit «laplacien scalaire de f (en M à la date t)».

3.2 Propriétés

- 1 L'opérateur laplacien scalaire transforme un champ scalaire en champ scalaire.
- 2 L'opérateur laplacien scalaire est un opérateur linéaire, c'est-à-dire que si λ et μ sont deux réels, $\{f(M,t) \text{ où } M \in \mathcal{D} \text{ et } t \in \mathcal{I}\}$ et $\{g(M,t) \text{ où } M \in \mathcal{D} \text{ et } t \in \mathcal{I}\}$ deux champs de scalaires alors :

$$\Delta \left[\lambda f + \mu g\right](M, t) = \lambda \Delta f(M, t) + \mu \Delta g(M, t)$$

3.3 Expressions dans les différents systèmes de coordonnées

3.3.1 Coordonnées cartésiennes

En coordonn'eescartésiennes, laplacien scalaire du champ $\{f(M,t) \text{ où } M \in \mathcal{D} \text{ et } t \in \mathcal{I}\} \text{ s'écrit :}$

 $\hfill \hfill \hfill$

3.3.2 Autres systèmes de coordonnées

Dans les autres systèmes de coordonnées, on utilise un formulaire.

Coordonnées cylindriques :

$$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$$

Coordonnées sphériques :

$$\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r^2 \tan \varphi} \frac{\partial f}{\partial \varphi} + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 f}{\partial \theta^2}$$

4 Équation locale potentiel électrostatique - source

4.1 Équation de Poisson

 \blacksquare Un potentiel électrique V(M) est solution de léquation de Poisson :

$$\Delta V(M) = -\frac{\rho(M)}{\varepsilon_0}$$

■ <u>Dans le cas d'une distribution finie</u>, les solutions de l'équation de Poisson sont les expressions du potentiel données dans le chapitre précédent.

Démontrer la loi de Poisson.

On a d'après l'équation de Maxwell-Gaus:
$$\operatorname{div} \vec{E} = \mathcal{E}$$
, or $\vec{E} = -\operatorname{grad} V$ donc $\operatorname{div} (-\operatorname{grad} V) = \mathcal{E}_o$

- \Box Cette relation qui lie un potentiel électrique à sa source, est en accord avec le fait que le théorème de superposition persiste pour un potentiel électrique. La linéarité de l'opérateur laplacien scalaire implique en effet que si:
 - $\{\rho_1(P); P \in (\mathcal{D}_1)\}$ crée $\{V_1(M); M \in \mathbb{R}^3\}$
 - et $\{\rho_2(P); P \in (\mathcal{D}_2)\}$ crée $\{V_2(M); M \in \mathbb{R}^3\}$

 $alors \ \{\lambda\rho_1(P) + \mu\rho_2(P); P \in (\mathcal{D}_1) \cup (\mathcal{D}_2)\} \ \text{crée} \ \big\{\lambda V_1(M) + \mu V_2(M); M \in \mathbb{R}^3\big\}.$

4.2 Cas particulier : équation de Laplace

 \blacksquare Sil existe une région (\mathcal{D}) de les pace où $\forall M \in (\mathcal{D}), \rho(M) = 0$ alors léquation de Poisson devient :

$$\Delta V(M) = 0$$

On nomme équation de LAPLACE une telle équation.