

Analyse 3

ÉCOLE CENTRALE DE PÉKIN

Cours de mathématiques du cycle préparatoire

Table des matières

1	Séries numériques			
	1.1	Les su	uites	1
		1.1.1	Premières propriétés	1
		1.1.2	Les suites classiques	3
		1.1.3	Les suites du type $u_{n+1} = f(u_n)$ avec f continue	4
		1.1.4	Une technique utile	6
	1.2	Les sé	źries	6
		1.2.1	Définitions	6
		1.2.2	Premiers résultats de convergence	7
	1.3	Séries	numériques	9
		1.3.1	Séries alternées	9
		1.3.2	Séries à termes positifs	10
	1.4	Autre	s techniques	16
		1.4.1	Majoration par une série géométrique	16
		1.4.2	Produit de Cauchy	17
		1.4.3	Utilisation des transformations d'Abel	18
	1.5	En pr	atique	10

Chapitre 1 Séries numériques

Table des matières du chapitre

1.1	Les suites	1
	1.1.1 Premières propriétés	1
	1.1.2 Les suites classiques	3
	1.1.3 Les suites du type $u_{n+1} = f(u_n)$ avec f continue	4
	1.1.4 Une technique utile	6
1.2	Les séries	6
	1.2.1 Définitions	6
	1.2.2 Premiers résultats de convergence	7
1.3	Séries numériques	9
	1.3.1 Séries alternées	9
	1.3.2 Séries à termes positifs	10
1.4	Autres techniques	16
	1.4.1 Majoration par une série géométrique	16
	1.4.2 Produit de Cauchy	17
	1.4.3 Utilisation des transformations d'Abel	18
1.5	En pratique	19

1.1 Les suites

1.1.1 Premières propriétés

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

DÉFINITION 1

Une suite $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ converge vers $l \in \mathbb{K}$ si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ n \ge N \Rightarrow |u_n - l| \le \varepsilon.$$

On dira qu'une suite est convergente, s'il existe $l \in \mathbb{K}$ tel que u converge vers l et l'on note $\lim_{n \to +\infty} u_n = l$. Si une suite u n'est pas convergente, on dit qu'elle est divergente.

Remarque 2 — Une suite bornée n'est pas nécessairement convergente : la suite de terme général $u_n = e^{in}$ donne des contre-exemples :

$$e^{in} + e^{i(n+2)} = 2e^{i(n+1)}\cos(1)$$

et en passant à la limite, on a $\cos(1) = \frac{1}{2}$ ce qui est faux. Généraliser à e^{inx} pour $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$

Définition 3

On dit qu'une suite **réelle** tend vers $+\infty$ (resp. $-\infty$), si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, n \geq N \Rightarrow u_n \geq A \text{ (resp. } u_n \leq A\text{)}$$

REMARQUE 4 — On dira que la suite réelle u admet une limite $l \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ pour dire que soit elle converge vers $l \in \mathbb{R}$ soit elle tend vers $\pm \infty$. Mais une suite est convergente ssi sa limite l est finie.

Théorème 5

(Théorème de Césaro) Soit u une suite qui tend vers $l \in \mathbb{K}$, alors la suite v de terme général $v_n =$ $u_0 + \cdots + u_{n-1}$ tend vers l. Si la suite est réelle et $l = \pm \infty$, alors le résultat est encore vrai.

Preuve — Si (u_n) converge vers $l \in \mathbb{K}$, alors $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ tel que $n > N \Rightarrow |u_n - l| < \varepsilon$.

$$|v_n - l| = \left| \frac{(u_0 - l) + \dots + (u_{n-1} - l)}{n} \right|$$

$$\leq \frac{|u_0 - l| + \dots + |u_{n-1} - l|}{n}$$

$$\leq \frac{|u_0 - l| + \dots + |u_{N-1} - l|}{n} + \frac{n - N}{n} \varepsilon.$$

On majore les deux termes dela somme :

1. L'entier N étant fixé, la somme $|u_0-l|+\cdots+|u_{N-1}-l|$ ne dépend pas de n et donc le quotient $\frac{|u_0-l|+\cdots+|u_{N-1}-l|}{n}$

tend vers 0. Il existe N'>N tel que si n>N', $\frac{|u_0-l|+\cdots+|u_{N-1}-l|}{n}\leq \varepsilon.$

2. De plus, pour tout $n \ge N'$, $0 < \frac{n-N}{n} < 1$.

On a ainsi montré que pour $n>N', \ |v_n-l|\leq 2\varepsilon,$ d'où la conclusion qui est valable pour une suite complexe. Si la suite est réelle et $l=+\infty,$ alors $\forall A>1,\ \exists N\in\mathbb{N}$ tel que $n\geq N\Rightarrow u_n>3A.$ On veut minorer la suite v_n pour n>N:

$$v_{n} = \frac{u_{0} + \dots + u_{N-1}}{n} + \frac{u_{N} + \dots + u_{n-1}}{n}$$

$$\geq \frac{u_{0} + \dots + u_{N-1}}{n} + 3 \frac{n - N}{n} A$$

Pour n > 3N, $3\frac{n-N}{n}A > 2A > A+1$. Le premier terme de la somme, lui, tend vers 0, donc il existe N' > 3N, tel que n > N', $\frac{u_0 + \dots + u_{N-1}}{n} \ge -1$. Finalement, pour tout A > 1, il existe n > N', tel que $n > N' \Rightarrow v_n > A$. Si la suite est réelle et $l = -\infty$, on applique le résultat précédent à $-u_n$.

Proposition 6

Soit A une partie bornée non vide de \mathbb{R} . Alors M est la borne supérieure de A ssi M est un majorant de A et il existe une suite croissante qui converge vers M. Si $M \notin A$, alors on peut supposer la suite $strictement\ croissante.$

Preuve — D'après le théorème de la borne supérieure, M existe. On peut construire

- 1. $(u_n) \in A^{\mathbb{N}^*}$ qui converge vers $M : \forall n \in \mathbb{N}^*, \exists u_n \in A \cap]M \frac{1}{n}, M];$
- 2. $(u_n) \in A^{\mathbb{N}^*}$ croissante et qui converge vers $M : \forall n \in \mathbb{N}^*, \exists u_{n+1} \in A \cap M \frac{1}{n}, M \cap [u_n, M];$
- 3. Si $M \notin A$, $(u_n) \in A^{\mathbb{N}^*}$ strictement croissante et qui converge vers $M : \forall n \in \mathbb{N}^*, \exists u_{n+1} \in A \cap M \frac{1}{n}, M[\cap]u_n, M[$.

Proposition 7

(Théorème d'encadrement des limites) Soit (u_n) , (v_n) et (w_n) trois suites telles que à partir d'une certain $rang\ u_n \leq v_n \leq w_n$. Si (u_n) et (w_n) convergent vers une même limite l, alors (v_n) converge vers l.

Théorème 8

On dit que deux suites rélles u et v sont adjacentes si

- 1. u est croissante:
- 2. v est décroissante;
- 3. v u converge vers 0.

Et dans ce cas, les suites u et v sont convergentes et convergent vers une même limite l et pour tout $n \in \mathbb{N}$

$$u_n \leq l \leq v_n$$
.

Preuve — La suite w=v-u est décroissante et tend vers 0, donc pour tout $n\in\mathbb{N}$ on a $v_n-u_n\geq 0$ ce qui donne $u_0 \le u_n \le v_n \le v_0$. Les suites u et v sont monotones bornées, donc convergentes et vers la même limite car w tend vers v0. v0 REMARQUE 9 — Un intérêt de ce théorème est de prouver la convergence de suites sans en connaître la valeur exacte, mais en ayant la possibilité de calculer une valeur approchée avec (u_n) ou (v_n) sachant que la marge d'erreur est $(v_n - u_n)$. Enfin, si les suites (u_n) et (v_n) sont strictement monotones, alors l'encadrement est strict : $u_n < l < v_n$.

Exemple 10 — Un exemple classique est la démonstration de e irrationnel : on montre que les suites u et v définies par

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 et $v_n = \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n \, n!}$

sont adjencentes : on montre en effet que (u_n) est strictement croissante, (v_n) strictement décroissante et que $(v_n - u_n)$ tend vers 0.

On en déduit que la limite commune, notée e, est irrationnelle; on suppose pour cela que s'écrit $e = \frac{a}{b}$ et on utilise l'encadrement donné par les suites : $u_b < e < v_b$ et on multiplie par b b!.

REMARQUE 11 — $Si(u_n)_{n\in\mathbb{N}}$ une suite de réels ou de complexes qui converge vers $l\neq 0$, alors $\frac{u_{n+1}}{u_n}$ est définie à partir d'un certain rang et tend vers 1.

Proposition 12

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle qu'à partir d'un certain rang

- 1. $\frac{u_{n+1}}{u_n} < l < 1$, alors la suite (u_n) converge vers 0.
- 2. $\frac{u_{n+1}}{u_n} > l > 1$, alors la suite (u_n) tend vers $+\infty$.
- 3. $\lim \frac{u_{n+1}}{u_n} = 1$, la suite peut converger ou diverger.

Preuve — Si l > 1, alors la suite est strictement croissante à partir d'un certain rang et ne peut converger vers un réel non nul d'après la remarque ci-dessus, donc elle tend vers $+\infty$. Si l < 1, alors la suite est strictement décroissante à partir d'un certain rang et est positive, donc converge, et la seule limite possible est 0.

La suite $u_n=n$ vérifie $\lim \frac{u_{n+1}}{u_n}=1$ mais est divergente.

Remarque 13 — La suite $u_n = \frac{x^n}{n!}$ tend vers 0 car $\frac{u_{n+1}}{u_n} = \frac{x}{n+1}$ tend vers 0 < 1.

1.1.2 Les suites classiques

- 1. Les suites arithmétiques sont les suites du type : $u_n = rn + u_0$, u_0 fixé, et alors $u_{n+1} = u_n + r$.
- 2. Les suites géométriques sont les suites du type : $u_n = q^n u_o$ avec u_0 fixé, et alors $u_{n+1} = q u_n$.
- 3. Les séries géométriques : Si $q \neq 1$, $\sum_{k=n}^{n} q^k = q^p \frac{1-q^{n-p+1}}{1-q}$.
- 4. Les suites arithmético-géométriques sont les suites du type : $u_{n+1} = au_n + b$, avec u_0 fixé et a et b des réels.
 - (a) Si a = 1, $u_n = bn + u_0$ (c'est une suite arithmétique).
 - (b) Si $a \neq 1$, on cherche une solution particulière constante $u_n = l$: on résout

$$l = al + b \iff l = \frac{b}{1 - a}$$

puis on ajoute la partie homogène : $v_n = (u_n - l)$ est une suite géométrique de raison a et de premier terme $u_0 - l$, donc

$$v_n = a^n v_0$$
 et $u_n = a^n (u_0 - l) + l$.

5. Les sommes de Riemann : si f est continue sur [a, b], alors

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \int_a^b f$$

•

Exemple 14 — Soit les suites indexées par \mathbb{N} :

- 1. $u_0 = 1$ et $u_{n+1} = u_n + \sqrt{2}$. Alors $u_n = n\sqrt{2} + 1$.
- 2. $u_0 = 2$, $u_{n+1} = 2u_n$, alors $u_n = 2^{n+1}$.
- 3. $u_0 = 2$, $u_{n+1} = 2u_n + 1$, alors $u_{n+1} + 1 = 2(u_n + 1)$ et $u_n = 3 \times 2^n 1$.

 $On\ calcule$:

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \cos(\frac{\pi}{3} + \pi \frac{k}{n}) = \int_{0}^{1} \cos(\frac{\pi}{3} + \pi x) dx = \frac{\sqrt{3}}{\pi}$$

1.1.3 Les suites du type $u_{n+1} = f(u_n)$ avec f continue

Proposition 15

Soit $f: I \to I$, I un intervalle fermé. Pour tout $u_0 \in I$, la suite u définie par la relation de récurrence : $u_{n+1} = f(u_n)$ existe.

De plus, si (u_n) est convergente, elle converge vers un point fixe de f.

Preuve — i) Montrons par récurrence que la suite (u_n) est bien définie : On a $u_0 \in I$ et si $u_n \in I$ défini, alors $u_{n+1} = f(u_n) \in I$ car $f(I) \subset I$, ce qui prouve le point i).

ii) L'intervalle I étant fermé, si u_n converge, alors sa limite l reste dans I.

De plus, si f est continue et (u_n) converge vers $l \in I$, alors $f(u_n)$ converge vers f(l); or $f(u_n) = u_{n+1}$ et donc $(f(u_n))$ converge aussi vers l, d'où f(l) = l.

On suppose f est une fonction de classe \mathcal{C}^1 sur un domaine \mathcal{D} . On étudie la suite récurrente définie par $u_0 \in \mathcal{D}$ et $u_{n+1} = f(u_n)$.

- 1. Étudier les variations de f et tracer son graphe.
- 2. On cherche les points de fixes de f:
 - (a) Graphiquement: Les points d'intersection de la droite d'équation y = x avec le graphe de f correspondent aux points fixes, on a donc le plus souvent une bonne idée de leur nombre et de leur valeur.
 - (b) Analytiquement : On résoud étudie le signe de la fonction g(x) = f(x) x. Le résultat doit être cohérent avec votre graphique!
- 3. On cherche un intevalle I (aussi petit que possible) stable par f tel que $u_0 \in I$. On sera le plus souvent dans l'un des trois cas suivants :
 - (a) Si f est croissante sur I, alors (u_n) est monotone. Cela résulte de l'étude de g ou encore :
 - si $u_0 \le u_1$, alors on montre par récurrence que (u_n) est croissante et (u_n) converge vers le plus petit point fixe supérieur à u_0 (s'il en existe) ou tend vers $+\infty$ (sinon).
 - si $u_0 \ge u_1$, alors u_n est décroissante et converge vers le plus grand point fixe inférieur à u_0 (s'il existe) ou diverge sinon.

En particulier, si I est un segment, alors la suite converge.

(b) Si f est décroissante sur I, les suites (u_{2n}) et (u_{2n+1}) sont monotones de monotonie opposée car $f \circ f$ est croissante. Il faut alors étudier les points fixes de $f \circ f$. Il peut arriver que (u_{2n}) et (u_{2n+1}) aient des limites distinctes.

EXEMPLE 16 — Soit $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$ avec $f(x) = \frac{1}{6}(x^2 + 8)$. On étudie $g(x) = f(x) - x = 1/6(x^2 - 6x + 8)$: g admet 2 et 4 comme racines et g est négative entre 2 et 4. Les intervalles intéressants sont $I_1 = [0; 2]$, $I_2 = [2; 4]$ et $I_3 = [4; +\infty[$ sont stables par f.

- i) Si u₀ ∈ I₁, alors la suite est croissante et majorée, donc converge vers l'unique point fixe de I₁, donc vers 2.
- ii) Si $u_0 \in I_2$, la suite est décroissante et minorée, donc converge; si $u_0 = \pm 4$, la suite est constante à partir du rang 1, sinon, (u_n) converge vers l'unique point fixe de f < 4, donc vers 2.
- iii) Si $u_0 \in I_3$, alors la suite est croissante. Si elle convergeait, ce serait vers un point fixe de f > 4, mais il n'en existe pas, donc la suite n'est pas majorée, elle tend vers $+\infty$.

Si $u_0 < 0$, la fonction f n'est plus monotone sur un intervalle stable contenant u_0 . Mais si $u_0 \in]-4,0]$, alors $u_1 \in [0,4[$ et la suite converge vers 2; si $u_0 < -4$, alors la suite tend vers $+\infty$.

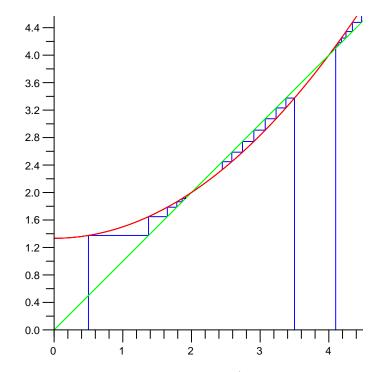


Illustration: $u_{n+1} = f(u_n)$, où $f(x) = \frac{1}{6}(x^2 + 8)$ est croissante.

EXEMPLE 17 — On pose $u_{n+1} = f(u_n)$ avec $f(x) = \frac{1}{2} \arccos x$ et $u_0 \in [0; 1]$. La fonction est décroissante. On remarque que $u_1 \in [0; \frac{\pi}{4}]$, donc $u_n \in [0; \frac{\pi}{4}]$ pour n > 0. On étudie $g(x) = \arccos x - x$ sur $[0; \frac{\pi}{4}]$. La dérivée est

$$g'(x) = -\frac{1}{\sqrt{1-x^2}} - 1 < 0$$

et comme $g(0) = \frac{\pi}{4}$ et g(1) = -1, g s'annule en unique point α et g est positive avant et négative après. On montre que f est contractante sur I bien choisi : sur $[0; \frac{\pi}{4}]$,

$$-\frac{1}{2\sqrt{1-\frac{\pi^2}{16}}} \le f'(x) \le -\frac{1}{2}$$

et l'application est k-lipschitzienne avec $k = \frac{1}{2\sqrt{1 - \frac{\pi^2}{16}}} \simeq 0.8 < 1$, donc u_n converge vers l'unique point fixe.

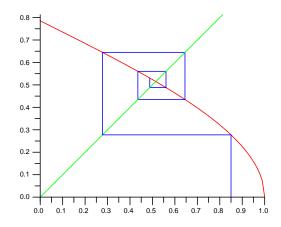


Illustration: $u_{n+1} = f(u_n)$, où $f(x) = \frac{1}{2} \arccos x$ est décroissante.

Utiliser f contractante est beaucoup plus efficace que f décroissante pour l'étude la suite. Remarquons enfin qu'a priori nous ne connaissons pas la valeur du point fixe; le calcul de u_n pour n assez grand permet d'en obtenir une valeur approchée. De plus, comme (u_{2n}) et (u_{2n+1}) sont adjacentes, on a un contrôle de l'erreur.

1.1.4 Une technique utile

Proposition 18

Lemme de l'escalier Soit $(v_n)_{n\geq 0}$ une suite réelle qui tend vers $+\infty$. On suppose que $v_{n+1}-v_n$ tend vers un nombre $a\neq 0$. Alors $v_n\sim an$ (et a>0).

Preuve — On applique le théorème de Césaro à $(v_{n+1} - v_n)_{n>0}$.

REMARQUE 19 — Si on a une suite (u_n) de réels > 0 qui tend vers 0, pour en avoir un équivalent on étudie $v_n = u_n^k$ avec k un réel négatif, de sorte que (v_n) tend vers $+\infty$. Si on montre que $v_{n+1} - v_n$ tend vers un nombre $a \neq 0$, on a $v_n \sim$ an (a est alors automatiquement > 0) et on a $u_n \sim a^{1/k} n^{1/k}$.

EXEMPLE 20 — On vérifie facilement que si $u_0 \in \mathbb{R}$, alors $u_{n+1} = \sin u_n$ tend vers 0, mais avec cette méthode, on trouve facilement un équivalent :

$$\frac{1}{u_{n+1}^l} - \frac{1}{u_n^l} = \frac{u_n^l - \sin^l u_n}{u_n^l \sin^l u_n} = \frac{u_n^l - u_n^l + l\frac{u_n^{l+2}}{6} + o(u_n^{l+2})}{u_n^{2l} + o(u_n^{2l})}$$

qui admet une limite non nulle ssi $l=2,\ d$ 'où $u_n\sim\sqrt{\frac{3}{n}}.$

1.2 Les séries

1.2.1 Définitions

On notera $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

DÉFINITION 21

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{K} .

- 1. On appelle série de terme générale u_n , la suite de terme général $S_n = \sum_{k=0}^n u_k$.
- 2. La suite $(S_n)_{n\in\mathbb{N}}$ s'appelle suite des sommes partielles de la série.
- 3. La série convergente si la suite $(S_n)_{n\in\mathbb{N}}$ converge. La limite S s'appelle somme de la série. On notera $S=\sum_{k=0}^{+\infty}u_k$.
- 4. Si la série est convergente de somme $S, R_n = S \sum_{k=0}^n u_k$ s'appelle le reste de la série d'ordre n:

$$R_n = \sum_{k=n+1}^{\infty} u_k.$$

Remarque 22 — On écrira parfois $\sum u_n$ pour indiquer la série de terme général u_n , mais on évitera d'écrire $\sum_{n=0}^{+\infty}$ tant que la convergence de la série n'a pas été prouvée.

EXEMPLE 23 — Soit $x \neq 1$ et $S_n = \sum_{k=0}^n x^k$ la série de terme général $u_n(x) = x^n$ pour $n \geq 0$.

$$S_n = 1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}, \quad S = \frac{1}{1 - x}, \quad R_n = \frac{x^{n+1}}{1 - x}.$$

Donc la série géométrique converge ssi |x| < 1.

De plus, en intégrant l'expression entre 0 et t, on obtient pour $t \in]-1;1[$

$$-\ln(1-t) = t + \frac{t^2}{2} + \dots + \frac{t^{n+1}}{n+1} + \int_0^t \frac{x^{n+1}}{1-x} dx.$$

Mais si $t \in]-1;0],$

$$\left| \int_0^t \frac{x^{n+1}}{1-x} dx \right| \le \int_0^{|t|} x^{n+1} dx \le \frac{1}{n+1}.$$

 $Donc, \forall t \in]-1;0]$

$$\left| \sum_{k=1}^{n} \frac{t^k}{k} + \ln(1-t) \right| \le \frac{1}{n+1}$$

En faisant tendre t vers -1 on obtient que la série harmonique alternée $\sum \frac{(-1)^k}{k}$ converge vers $-\ln(2)$.

Remarque 24 — L'ensemble des séries convergentes est un sous-espace vectoriel. Par contre, on ne peut pas définir à priori un produit interne sur les séries :

$$\left(\sum u_n\right)\left(\sum v_n\right)\stackrel{?}{=}\left\{\begin{array}{l} \sum u_nv_n \ \textit{Produit de Hadamard} \\ \sum w_n, \ w_n=\sum_{k=0}^n u_kv_{n-k} \ \textit{Produit de Cauchy} \end{array}\right.$$

Le problème est que la série obtenue n'est pas nécessairement convergente et la limite d'un produit ne converge pas nécessairement vers le produit des limites!

Proposition 25

Soit $\sum u_n$ la série de terme général u_n converge, alors (u_n) tend vers $0 \in \mathbb{K}$.

Preuve — On écrit $u_n = S_{n+1} - S_n$ et si (S_n) converge, alors (u_n) tend vers 0. Si terme général d'une série ne tend pas vers 0, on dit qu'elle diverge grossièrement.

1.2.2 Premiers résultats de convergence

§ 1. Convergence absolue

Proposition 26

Une série $\sum u_n$ à termes positifs : $\forall n \in \mathbb{N}$, $u_n \geq 0$ converge ssi la suite des sommes partielles $\sum_{k=0} u_k$ est majorée et sinon la série tend vers $+\infty$.

Preuve — Une suite croissante à termes positifs est soit bornée et alors converge soit tend vers $+\infty$.

Remarque 27 — Même si c'est "évident" d'après le contexte, vous écrirez " $\sum u_n$ est une série à termes positifs majorée donc convergente" et jamais " $\sum_n u_n$ est majorée donc convergente".

Proposition 28

Soit $u_n > 0$ et $u_n \le v_n$, alors $\sum v_n$ converge implique que $\sum u_n$ converge; $\sum u_n$ diverge implique que $\sum v_n$ diverge.

REMARQUE 29 — Pour une série à termes positifs diverger et tendre vers $+\infty$ est équivalent, mais pas en général. Évitez de dire la série diverge pour dire qu'elle tend vers $+\infty$!

Exemple 30 — On a $0 < \frac{1}{n^2} \le \frac{1}{n(n-1)}$. Dans l'exemple 36 nous allons montrer que $\sum \frac{1}{n(n-1)}$ converge. On en déduit que $\sum \frac{1}{n^2}$ converge.

Définition 31

On dit qu'une série $\sum_n u_n$ de E est absolument convergente si la série de terme général $|u_n|$ converge.

Proposition 32

Une série absolument convergente est convergente.

Preuve — Si la suite est réelle, on pose $u_n^+ = \max(0, u_n)$ et $u_n^- = \max(0, -u_n)$. Les séries $\sum u_n^+$ et $\sum u_n^-$ sont des séries à termes positifs et majorées par $\sum |u_n|$ donc sont convergentes et on note leur limite respective l^+ et l^- . Comme $u_n = u_n^+ - u_n^-$, on en déuit que la série $\sum u_n$ converge et que sa limite est $l^+ - l^-$.

Pour une suite à termes complexes $z_n = x_n + iy_n$ avec (x_n) et (y_n) des suites réelles, on sait que $|x_n|$ et $|y_n|$ sont majorés par $|z_n|$. On en déduit que les séries $\sum x_n$ et $\sum y_n$ sont absolument convergentes, donc convergentes et $\sum z_n$ est aussi convergente.

REMARQUE 33 — Une série convergente n'est pas nécessairement absolument convergente. Par exemple la série harmonique alternée $\left(\sum \frac{(-1)^k}{k}\right)_{k\geq 1}$ converge, mais n'est pas absolument convergente (?). On dit dans ce cas que la série est semi-convergente.

Remarque 34 —

- 1. Pour montrer la convergence d'une série, on commencera par essayer de montrer qu'elle est absolument convergente. Pour les suites à termes positifs on va donner au paragraphe suivant des techniques très efficaces.
- 2. L'ensemble des séries absolument convergentes est encore un sous-espace vectoriel de $l^1(\mathbb{K})$. L'application $\sum u_n \mapsto \sum_{n=0}^{+\infty} |u_n|$ est une norme sur $l^1(\mathbb{K})$.

§ 2. Séries téléscopiques

Proposition 35

(Séries téléscopiques) Une série téléscopique est une série de terme général $u_n = v_{n+1} - v_n$, où $(v_n)_{n \ge 0}$ est une suite donnée.

Dans ce cas, la somme partielle vaut $S_n = v_{n+1} - v_0$ et donc la série converge ssi $(v_n)_{n \ge 0}$ converge.

Exemple 36 —

1. Soit
$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n u_k$$
. On écrit
$$u_n = \frac{1}{n} - \frac{1}{n+1} = v_n - v_{n+1} \quad \Rightarrow S_n = v_1 - v_{n+1} = -\frac{1}{n+1} + 1.$$

et donc la série converge et $\sum_{k=1}^{+\infty} \frac{1}{n(n+1)} = 1$.

2. Soit
$$S_n = \sum_{k=2}^n \ln\left(1 - \frac{1}{n^2}\right)$$
.

$$S_n = \sum_{k\geq 2}^n (\ln(k+1) + \ln(k-1) - 2\ln k)$$

$$= \sum_{k\geq 2}^n [\ln(k+1) - \ln k] - [\ln k - \ln(k-1)]$$

$$= \ln\left(\frac{n+1}{n}\right) - \ln 2$$

dont on déduit que S_n converge vers $-\ln 2$.

REMARQUE 37 — L'écriture $\sum_{n=1}^{+\infty} (\frac{1}{n} - \frac{1}{n+1})$ a un sens mais ce n'est pas égal à $\sum_{n=1}^{+\infty} \frac{1}{n} - \sum_{n=1}^{+\infty} \frac{1}{n+1}$ qui n'en a pas car les séries divergent.

1.3 SÉRIES NUMÉRIQUES

1.3.1 Séries alternées

DÉFINITION 38

Une $\sum u_n$ de réels est une série alternée si la suite $((-1)^n u_n)$ est de signe constant.

Proposition 39

(Critère de Leibniz) Soit une série alternée de terme général u_n telle que

- i) La suite ($|u_n|$) est décroissante.
- ii) $\lim u_n = 0.$

Alors

- 1. La série est convergente.
- 2. Si S est sa somme, alors S est compris entre deux sommes partielles d'indices consécutifs.
- 3. S est du signe de u_0 et $|S| \leq |u_0|$.
- 4. Le reste d'ordre n R_n de la série est du signe de u_{n+1} et $|R_n| \leq |u_{n+1}|$.

Preuve — On montre que (S_{2n}) et (S_{2n+1}) sont adjacentes et toutes les affirmations en résultent.

Commençons par remarquer que $u_n + u_{n+1}$ est toujours du signe de u_n car $(|u_n|)$ décroit.

La différence $S_{2n+1} - S_{2n} = u_{2n+1}$ tend par hypothèse vers 0 par hypothèse.

De plus, (S_{2n}) et (S_{2n+1}) sont monotones de monotonies inversées car $S_{2n+3} - S_{2n+1} = u_{2n+3} + u_{2n+2}$ est du signe de u_{2n+2} , $S_{2n+2} - S_{2n} = u_{2n+2} + u_{2n+1}$ est du signe de u_{2n+1} et u_{2n+2} et u_{2n+1} sont de signe contraire puisque la suite est alternée.

Les deux suites étant adjacentes, elles convergent vers une même limite S et le point 2 résulte de l'encadrement de la limite des suites adjacentes.

Pour le point 3, on écrit

$$S = \lim_{n \to +\infty} (u_0 + u_1) + \dots (u_{2n} + u_{2n+1})$$

qui est une somme de termes de même signe, celui de u_0 . De même

$$S - u_0 = \lim_{n \to +\infty} (u_1 + u_2) + \cdots (u_{2n+1} + u_{2n+2})$$

est du signe opposé à u_0 , donc si $u_0 \ge 0$, S et u_0 sont de positifs et $S - u_0 \le 0$ et si $u_0 \le 0$, alors $S \le 0$ et $S - u_0 \ge 0$, ce qui montre le point 3.

Pour le point 4, on écrit $R_n = \sum_{k>n+1}^{+\infty} u_k$ qui est encore une série alternée, on applique les résultats précédents.

Remarque 40 —

- 1. Ce résultat s'appelle aussi la règle de Leibniz ou le critère spécial des séries alternées. Il ne donne pas que la convergence de la série, mais encadre le reste.
- 2. Le piège quand on utilise le Critère de Leibniz est d'oublier de montrer que la suite (u_n) est décroissante : la série $\sum_{n\geq 1} (-1)^n e^{-(n-5)^2}$ vérifie le critère des séries alternées pour $n\geq 5$!

Exemple 41 — La série harmonique alternée est convergente vers — $\ln 2$. Le critère spécial des séries alternées montre aussi que

$$\sum_{k=1}^{2n+1} \frac{(-1)^k}{n} \le -\ln 2 \le \sum_{k=1} \frac{(-1)^k}{k}.$$

1.3.2 Séries à termes positifs

Dans cette partie, on considère une série $\sum u_n$ de terme général u_n réel strictement positifs.

§ 1. Comparaison des suites

Proposition 42

Soit $\sum u_n$ et $\sum v_n$ des séries à termes positifs telles que $u_n = O(v_n)$; alors la convergence de $\sum v_n$ implique la convergence de $\sum u_n$. Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Preuve — Si $u_n = O(v_n)$, alors il existe A > 0 tels que pour $n \ge N$, $0 \le u_n \le Av_n$ et $\sum (Av_n)$ est encore convergente à termes positifs, donc $\sum u_n$ converge.

De même, si
$$\sum u_n$$
 tend vers $+\infty$, il en est de même pour $\sum v_n$.

Corollaire 43

Soit $\sum u_n$ et $\sum v_n$ des séries à termes positifs telles que $u_n \sim v_n$; alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Preuve — On a alors $u_n = O(v_n)$ et $v_n = O(u_n)$, d'où la conclusion.

REMARQUE 44 — Ces propriétés ne sont plus vraies pour des suites quelconques (non nécessairement positives) : si $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$, alors $u_n \sim v_n$ mais $\sum u_n$ converge (série alternée) tandis que $\sum v_n$ est la somme d'une série convergente plus une série divergente, donc diverge.

Théorème 45

Soit $\sum u_n$ une série à termes positifs et $\sum v_n$ une série telle que $v_n = o(u_n)$ (resp. $v_n = O(u_n)$). Alors 1. Si $\sum u_n$ converge, alors $\sum v_n$ converge et

$$\sum_{k=n}^{+\infty} v_k = o\left(\sum_{k=n}^{+\infty} u_k\right) \quad \text{(resp. } 0\left(\sum_{k=n}^{+\infty} u_k\right)\text{)}.$$

2. $Si \sum v_n$ diverge, alors $\sum u_n$ diverge et

$$\sum_{k=0}^{n} v_k = o\left(\sum_{k=0}^{n} u_k\right) \quad \text{(resp. } O\left(\sum_{k=0}^{n} u_k\right)\text{)}.$$

Preuve — Pour le 1/, écrivons $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, tel que $n \geq N$

$$0 < |v_n| < \varepsilon u_r$$

En sommant entre n et p et en faisant tendre p vers $+\infty$, on obtient

$$0 \le \sum_{k=n}^{+\infty} |v_k| \le \varepsilon \sum_{k=n}^{+\infty} u_k,$$

ce qui montre le résultat

Pour le 2/, on a encore $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ tel que } n \geq N$

$$0 \le |v_n| \le \varepsilon u_n$$

et en sommant

$$0 \leq \sum_{k=0}^n |v_k| \leq \sum_{k=0}^{N-1} |v_k| + \varepsilon \sum_{k=N}^n u_k.$$

Or il existe N' tel que pour $n \ge N' \ge N$, $\sum_{k=0}^{N-1} |v_k| \le \varepsilon \sum_{k=N}^n u_k$ puisque la série $\sum u_n$ tend vers $+\infty$ et donc

$$0 \leq \sum_{k=0}^n |v_k| \leq 2\varepsilon \sum_{k=N}^n u_k \leq 2\varepsilon \sum_{k=0}^n u_k.$$

Par définition, on a bien $\sum_{k=0}^{n} v_k = o\left(\sum_{k=0}^{n} u_k\right)$.

Corollaire 46

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que $u_n \sim v_n$. Alors

1. Si $\sum u_n$ converge, alors $\sum v_n$ converge et les restes sont équivalents :

$$\sum_{k=n}^{+\infty} u_k \sim \sum_{k=n}^{+\infty} v_k.$$

2. Si $\sum u_n$ diverge, alors $\sum v_n$ diverge et les sommes partielles sont équivalentes :

$$\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k.$$

Preuve — Comme $u_n \sim v_n$ ssi $(v_n - u_n) = o(u_n)$, on peut appliquer le théorème ci dessus et le résultat est immédiat. \square

Remarque 47 —

- 1. Ce théorème montre bien l'intérêt des équivalents : si (u_n) on converge vers l, on étudie $(l-u_n)$ et si (u_n) tend vers $+\infty$, on étudie la suite elle-même.
- 2. Le théorème de Césaro : $si\ (u_n)$ converge vers $a \neq 0$, alors $\sum u_n$ est équivalent à na! Et $si\ u_n$ tend vers 0, alors $u_n = o(1)$, d'où $\sum u_n = o(n)$. On retrouve les résultats.

Exemple 48 —

- 1. (Séries de Riemann) Ce sont les séries $\sum \frac{1}{n^{\alpha}}$. On utilise les sommes téléscopiques.
 - (a) Si $\alpha > 1$, on pose $v_n = \frac{1}{n^{\alpha 1}} \frac{1}{(n+1)^{\alpha 1}} > 0$. On a pour $\alpha \neq 1$:

$$v_n = \frac{1}{n^{\alpha - 1}} \left(1 - \left(\frac{1}{1 + \frac{1}{n}}\right)^{\alpha - 1}\right) = \frac{1}{n^{\alpha - 1}} \left[1 - \left(1 - \frac{1}{n} + o(\frac{1}{n})\right)^{\alpha - 1}\right] \sim \frac{\alpha - 1}{n^{\alpha}}$$

ce qui montre que $\sum \frac{1}{n^{\alpha}}$ converge puisque $\frac{1}{n^{\alpha}} = O(v_n)$ et (v_n) converge car somme téléscopique de terme général convergeant vers 0. On en déduit un équivalent du reste :

$$\sum_{k=n}^{+\infty} \frac{1}{n^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}.$$

(b) Si
$$\alpha < 1$$
, on pose $v_n = \frac{1}{(n+1)^{\alpha-1}} - \frac{1}{(n)^{\alpha-1}} > 0$ et

$$v_n \sim \frac{1-\alpha}{n^{\alpha}},$$

et de même $\sum v_n$ tend $vers + \infty$, donc $\sum \frac{1}{n^{\alpha}}$ diverge (on obtient même un équivalent de la série elle-même .

2. On prouve la formule de Stirling

$$n! \sim \sqrt{2\pi n} n^n e^{-n}$$

Pour cela, on pose

$$\forall n \in \mathbb{N}, \quad u_n = \frac{n^n e^{-n} \sqrt{n}}{n!} \quad \text{et } v_n = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left[\left(\frac{n+1}{n}\right)^{n+\frac{1}{2}} e^{-1}\right].$$

On calcule

$$v_n = -1 + \left(n + \frac{1}{2}\right)\ln(1 + \frac{1}{n}) = -1 + \left(n + \frac{1}{2}\right)\left(\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^3})\right) = O(\frac{1}{n^2}).$$

On en déduit que la série $\sum v_n$ converge d'après la Proposition 42. Or $v_n = \ln(u_{n+1}) - \ln(u_n)$, donc la suite $(\ln(u_n))$ converge vers λ un réel (d'après la proposition 35) et \ln étant continue, ainsi (u_n) converge vers $e^{\lambda} > 0$. On pose $k = e^{-\lambda}$. On en déduit que $n! \sim k\sqrt{n}n^ne^{-n}$.

Pour calculer la valeur de k, nos résultats sur l'intégrale de Wallis $I_n = \int_0^{\frac{\pi}{2}} \cos^n t dt$: $I_0 = \frac{\pi}{2}$, $I_1 = 1$ et une ipp donne pour $n \ge 2$

$$nI_n = (n-1)I_{n-2}.$$

On obtient ainsi

$$I_{2n} = \frac{2n-1}{2n} I_{2n-2} = \frac{(2n-1) \times (2n-3) \times \dots \times 1}{2n \times (2n-2) \times \dots \times 2} \times \frac{\pi}{2} = \frac{(2n)!}{2^{2n} (n!)^2} \times \frac{\pi}{2}$$

et

$$I_{2n+1} = \frac{2n}{2n+1} I_{2n-1} = \frac{2n \times (2n-2) \times \dots \times 2}{(2n+1) \times (2n-3) \times \dots \times 1} = \frac{2^{2n} (n!)^2}{(2n+1)!}$$

On peut alors calculer un équivalent du quotient en fonction de k.

$$\frac{I_{2n+1}}{I_{2n}} = \frac{2}{(2n+1)\pi} \left[\frac{2^{2n} (n!)^2}{(2n!)} \right]^2 \sim \frac{1}{\pi n} \left(\frac{2^{2n} k^2 n \, n^{2n} e^{-2n}}{k \sqrt{2n} \, (2n)^{(2n)} e^{-2n}} \right)^2 \sim \frac{k^2}{2\pi}.$$

On
$$I_{2p} \sim I_{2p+1}$$
, d'où $\frac{k^2}{2\pi} \sim 1$ et $k = \sqrt{2\pi}$.

3. Déterminer en fonction du paramètre $\alpha>0$ la nature de la série $\sum u_n$ où

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{(-1)^{n-1}}{n^{\alpha} + (-1)^n}.$$

La suite ici n'est plus de signe constant. On va d'abord faire un développement asymptotique pour éliminer la partie qui oscille :

$$u_n = \frac{(-1)^{n-1}}{n^{\alpha}} \times \frac{1}{1 + (-1)^n n^{-\alpha}} = \frac{(-1)^{n-1}}{n^{\alpha}} + \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right).$$

Or pour tout $\alpha > 0$, $\sum \frac{(-1)^{n-1}}{n^{\alpha}}$ est une série alternée (pas $\sum u_n$!), donc converge, et $\sum u_n$ est de même nature que $\sum v_n$ avec $v_n = \frac{1}{n^{2\alpha}}$. D'après ce qui précède, la série $\sum u_n$ converge ssi $2\alpha > 1$ soit $\alpha > \frac{1}{2}$.

§ 2. Utilisation de $\frac{u_{n+1}}{u_n}$

Proposition 49

(Théorème de comparaison logarithmique) Soit $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs telle que $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ à partir d'un certain rang n_0 . Alors

- 1. Si la série $\sum v_n$ converge, alors $\sum u_n$ aussi.
- 2. Si la série $\sum u_n$ diverge, alors $\sum v_n$ aussi.

Preuve — On fait le produit des inégalités entre n_0 et $n: \forall n \geq n_0$, on obtient $\frac{u_n}{u_{n_0}} \leq \frac{v_n}{v_{n_0}}$ et donc $u_n \leq \frac{u_{n_0}}{v_{n_0}}v_n$ et le théorème de comparaison des suites impliquent le résultat. On pouvait aussi prendre le logarithme des inégaliés et on obtenait $\ln u_{n+1} - \ln u_n \leq \ln v_{n+1} - \ln v_n$ ce qui donnait des sommes téléscopiques.

Corollaire 50

(Règle de D'Alembert) Soit $\sum u_n$ est une série à termes strictement positifs.

- 1. S'il existe k < 1 tel que $\frac{u_{n+1}}{u_n} \le k$ à partir d'un certain rang, alors $\sum u_n$ converge.
- 2. Si $\frac{u_{n+1}}{u_n} \ge 1$ à partir d'un certain rang, alors $\sum u_n$ diverge grossièrement.

Preuve — On applique le théorème de comparaison logarithmique avec $v_n = k^n$.

Remarque 51 — On a une autre version du critère de D'Alembert que l'on peut aussi retrouver à partir du corollaire : $si\ u_n > 0$ et $\lim \frac{u_{n+1}}{u_n} = l < 1$, alors $\sum u_n$ converge (prendre $k = \frac{1+l}{2}$) et $si\ \lim \frac{u_{n+1}}{u_n} = l > 1$ la série $\sum u_n$ diverge grossièrement.

Exemple 52 — Étudier la convergence de la série de terme générale $\sum_{n>1} \frac{n^n}{n!}$

Remarque 53 — (Règle de Duhamel) Si $\lim \frac{u_{n+1}}{u_n} = 1$, le critère de D'Alembert ne permet pas de statuer sur la convergence de la série. L'idée est alors de u_n avec $v_n = \frac{1}{n^{\alpha}}$:

$$\frac{v_{n+1}}{v_n} = \left(\frac{n}{n+1}\right)^{\alpha} = \left(1 + \frac{1}{n}\right)^{-\alpha} = 1 - \frac{\alpha}{n} + o(\frac{1}{n}).$$

On calcule alors un dl

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\beta}{n} + o(\frac{1}{n})$$

- 1. Si $\beta > 1$, alors $\sum u_n$ converge: prendre $1 < \alpha < \beta$.
- 2. Si $\beta < 1$, alors $\sum u_n$ diverge: prendre $\alpha = 1$.

EXEMPLE 54 — Soit $\sum u_n$ la série de terme général $\frac{1\times 3\times \cdots \times (2n-1)}{2\times 4\times \cdots \times 2n} \times \frac{1}{2n+1}$. On calcule $\frac{u_{n+1}}{u_n} = \frac{(2n+1)^2}{(2n+2)(2n+3)} = 1 - \frac{6n-5}{(2n+2)(2n+3)} = 1 - \frac{3}{2n} + o(\frac{1}{n})$. Or si $v_n = \frac{1}{n^{\alpha}}$ avec $1 < \alpha < \frac{3}{2}$, alors $\frac{u_{n+1}}{u_n} - \frac{v_{n+1}}{v_n} = \frac{\alpha-\beta}{n} + o(\frac{1}{n}) < 0$, pour n assez grand. D'après le théorème de comparaison logarithmique, $\sum u_n$ converge.

§ 3. Critère de Cauchy

Proposition 55 (Critère de Cauchy)

Soit (u_n) une suite strictement positive telle que

$$\lim \sqrt[n]{u_n} = \ell.$$

- 1. Si $\ell < 1$, alors la série $\sum u_n$ converge.
- 2. Si $\ell > 1$, alors la série $\sum u_n$ diverge.

Preuve — On va comparer la suite u_n et une suite géométrique.

1. Si $\ell < 1$, alors il existe un réel $0 \le \lambda < 1$ tel que $u_n \le \lambda^n$ à partir d'un certain rang et la série $\sum \lambda^n$ converge, d'où la série $\sum u_n$ converge aussi.

2. Si $\ell > 1$, alors il existe un réel $\lambda > 1$ tel que $u_n \ge \lambda^n > 1$ à partir d'un certain rang, donc la série $\sum u_n$ diverge grossièrement.

Exemple 56 — Soit la suite $u_n = e^{-n+(-1)^n}$:

$$\sqrt[n]{u_n} = e^{-1 + \frac{(-1)^n}{n}} \longrightarrow \frac{1}{e} < 1.$$

Donc la série $\sum u_n$ converge, d'après le critère de Cauchy.

Remarque 57 —

1. Le critère de D'Alembert ne permet pas de conclure dans l'exemple précédent car

$$\frac{u_{n+1}}{u_n} = e^{-n-1-(-1)^n + n - (-1)^n} = e^{1-2(-1)^n}$$
 n'a pas de limite.

2. En fait, le critère de Cauchy est toujours plus fort que le critère de D'Alembert : si $\lim \frac{u_{n+1}}{u_n} = \ell$, alors $\lim \sqrt[n]{u_n} = \ell$.

$$\begin{array}{l} \textit{Preuve} \ -\ Si\ \lim \frac{u_{n+1}}{u_n} = \ell,\ alors\ \forall \varepsilon > 0,\ \exists N \in \mathbb{N},\ \forall n \geq N,\ \ell - \varepsilon \leq \frac{u_{n+1}}{u_n} \leq \ell + \varepsilon.\ D'où\ (par\ r\'ecurrence): \\ \forall n \geq N,\ u_N \cdot (\ell - \varepsilon)^{n-N} \leq u_n \leq u_N \cdot (\ell + \varepsilon)^{n-N}.\ Or\ \lim_{n \to \infty} \sqrt[n]{u_N \cdot (\ell \pm \varepsilon)^{n-N}} = \ell \pm \varepsilon. \\ D'où\ \exists N' \geq N,\ \forall n \geq N',\ \ell - 2\varepsilon \leq u_n \leq \ell + 2\varepsilon.\ Donc\ \lim\ \sqrt[n]{u_n} = \ell. \end{array}$$

§ 4. Comparaison séries - intégrales

Définition 58

Soit $f:[a,+\infty[\to\mathbb{R} \text{ une fonction continue. On dit que l'intégrale } \int_a^{+\infty} f(t) dt$ est convergente si la limite quand $x\to+\infty$ de $\int_a^x f(t) ft$ eciste et alors on note

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{+\infty} f(t) dt$$

Exemple 59 — On
$$a \int_0^{+\infty} \frac{1}{1+x^2} = \frac{\pi}{2}$$

Théorème 60

Soit $f:[0;+\infty[\to\mathbb{R} \ une\ fonction\ continue\ par\ morceaux\ à\ valeurs\ réelles\ positives\ décroissante.$

- 1. Alors la série de terme générale $v_n = \int_{n-1}^n f(t) dt f(n)$ est convergente.
- 2. La série $\sum f(n)$ converge ssi f l'intégrale impropre $\int_0^{+\infty} f(t) dt$ converge.
- 3. Si la série $\sum f(n)$ diverge, alors $\sum_{n=0}^{+\infty} f(k) \sim \int_0^n f(t) dt$.



L'intégrale de f est encadrée par des séries de terme général f(n).

Preuve — Pour le 1/ Comme f est décroissante,

$$0 \le \int_{n-1}^{n} f(t) - f(n) dt \le f(n-1) - f(n)$$

donc la série $\sum v_n$ est à termes positifs et est majorée car la série téléscopique $\sum f(n-1) - f(n)$ est convergente donc bornée. Plus précisément, f étant positive, f(0) est un majorant et la suite converge. 2/ On déduit immédiatement que $\sum f(n)$ converge ssi $\left(\int_0^n f(t) \, dt\right)_n$ converge. Or la fonction f étant positive, l'application

 $x \mapsto \int_{\hat{a}}^{x} f(t) dt$ est croissante, d'où

$$\int_0^{E(x)} f(t) \, dt \le \int_0^x f(t) \, dt \le \int_0^{E(x)+1} f(t) \, dt$$

et par encadrement des limites, on a bien $\sum f(n)$ converge ssi $\int_0^{+\infty} f(t)dt$ est convergente. Pour le 3, la somme des inégalité du 1/ entre

Remarque 61 —

1. La fonction f sera parfois définie sur $[a; +\infty[$, le résultat reste le même pour la série $\sum_{n\geq a} u_n$.

2. Si la série converge, alors $\lim_{t\to +\infty} f(t) = 0$ et en sommant les inégalités du 1/

$$0 \le \int_{n-1}^{+\infty} f(t) \, dt - \sum_{k=n}^{+\infty} f(k) \le f(n-1).$$

et le plus souvent on a $f(n-1) = o\left(\int_{n}^{+\infty} f(t) dt\right)$ dont on déduit que $\sum_{k=1}^{+\infty} f(k) \sim \int_{n}^{+\infty} f(t) dt$. (par exemple pour les sommes de Riemann ci-dessous)

Exemple 62 —

1. Développement asymptotique de la série harmonique : On applique ce résultat à la fonction $f: x \mapsto$ $\frac{1}{1+r}$ strictement décroissante :

$$\sum_{t=1}^{n-1} v_n = \int_0^{n-1} f(t)dt - \left(\frac{1}{2} + \dots + \frac{1}{n}\right) = \ln n - \left(\frac{1}{2} + \dots + \frac{1}{n}\right) < f(0) = 1$$

converge. On en déduit que la suite

$$\ln n - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) < 0$$

est convergente. Ceci permet d'écrire un développement asymptotique de la série harmonique

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln(n) + \gamma + o(1),$$

où $\gamma > 0$ s'appelle la constante d'Euler.

2. Séries de Bertrand : ce sont les séries de la forme $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ avec $\alpha, \beta \in \mathbb{R}$.

(a) Si
$$\alpha < 1$$
, $\frac{1}{n} = O\left(\frac{1}{n^{\alpha} \ln^{\beta} n}\right)$, la série diverge car $\sum \frac{1}{n}$ diverge.

(b) Si
$$\alpha > 1$$
, $\frac{1}{n^{\alpha} \ln^{\beta} n} = o\left(\frac{1}{n^{(1+\alpha)/2}}\right)$ et donc converge puisque $\frac{\alpha+1}{2} > 1$.

(c) Si
$$\alpha=1$$
, la série est de même nature que $\int_e^{+\infty} \frac{1}{x \ln^{\beta} x}$

(c) Si $\alpha = 1$, la série est de même nature que $\int_e^{+\infty} \frac{1}{x \ln^{\beta} x}$. Si $\beta \neq 1$, l'intégrande admet pour primitive $\frac{1}{(1-\beta) \ln^{\beta-1} x}$ et donc l'intégrale converge ssi

Si $\beta = 1$, alors l'intégrande admet $\ln \ln x$ comme primitive et l'intégrale est encore divergenete. Conclusion la série converge ssi $\alpha > 1$ ou $\alpha = 1$ et $\beta > 1$.

Remarque 63 — Ce que l'on a fait dans le cas $\alpha = 1$ (exemple 62) se généralise aux séries de Riemann avec $f(x) = \frac{1}{(1+x)^{\alpha}}$ avec $\alpha > 0$ (f doit être décroissante). On a alors pour $\alpha \neq 1$

$$\int_{A}^{B} f(t) = \left[\frac{1}{(1-\alpha)(1+x)^{\alpha-1}} \right]_{A}^{B}$$

1. Si $0 < \alpha < 1$, alors la série $\sum v_n$ du théorème 60 est convergente

$$-\sum_{k=1}^{n-1} v_k = \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} - \int_0^{n-1} f(t)dt = 1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \frac{1}{(1-\alpha)} - 1 - \frac{1}{(1-\alpha)n^{\alpha-1}}$$

ce qui montre que si $0 < \alpha < 1$, alors $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{1}{(1-\alpha)n^{\alpha-1}}$ car tend vers $+\infty$.

2. Si $\alpha > 1$, on cherche un équivalent du reste $R_n = \sum_{k=-1}^{+\infty} \frac{1}{k^{\alpha}}$. On somme entre n et N l'inégalité de la preuve 1/ du théorème 60 :

$$0 \le \int_{n-1}^{N} f(t) dt - \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \frac{1}{n^{\alpha}} - \frac{1}{(N+1)^{\alpha}}$$

et en passant à la limite quand $N \to +\infty$, on obtient :

$$R_n \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

Autres techniques 1.4

1.4.1 Majoration par une série géométrique

Exemple 64 — Soit $\sum u_n$ la série de terme générale $u_n = \left(\frac{2n+5}{3n+\cos n}\right)^n$.

On remarque que $\lim_{n\to\infty}\frac{2n+5}{3n+\cos n}=\frac{2}{3}$, ce qui montre qu'à partir d'un certain rang $|u_n|^{1/n}\leq \frac{5}{6}$ et donc $|u_n|\leq \left(\frac{5}{6}\right)^n$, terme général d'une série géométrique convergente. On en déduit que $\sum u_n$ est absolument

Remarque 65 — Pour étudier la série de terme général $\sum u_n$ il est parfois très efficace de majorer $|u_n|^{1/n}$ par $0 < \alpha < 1$ et de conclure avec $|u_n| \le \alpha^n$.

1.4.2 Produit de Cauchy

§ 1. Définition et propriétés

Soit $\sum a_n$ et $\sum b_n$ deux séries à termes complexes. On appelle produit de Cauchy des deux séries la série $\sum c_n$ telle que

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Proposition 67 Soit $\sum a_n$ et $\sum b_n$ deux séries à termes réels positifs convergentes, alors leur produit de Cauchy de terme génral c_n est convergent et

$$\left(\sum_{k=0}^{+\infty}a_k\right)\left(\sum_{k=0}^{+\infty}b_k\right)=\sum_{k=0}^{+\infty}c_k.$$

Preuve — On pose $c_n = \sum_{k=0}^n a_k b_{n-k}$. Notons A_n , B_n et C_n les sommes partielles d'indices n des séries $\sum a_n$, $\sum b_n$ et

$$M_n = (a_i \times b_{n-j})_{(i,j) \in [0,n]} = \begin{pmatrix} a_0 b_n & \cdots & a_n b_n \\ \vdots & \ddots & & \vdots \\ a_0 b_1 & & \ddots & \vdots \\ a_0 b_0 & a_1 b_0 & \cdots & a_n b_0 \end{pmatrix}.$$

Le produit $A_n \times B_n$ est la somme de tous les coefficients de la matrice M_n et C_n est la somme des n+1 diagonales inférieures.

$$\forall n \in \mathbb{N}, \ C_n \le A_n B_n \le C_{2n}$$

En effet, chaque terme de la somme C_n se retrouve dans le produit A_nB_n et chaque terme de la somme dévelopée A_nB_n se

Donc la série $\sum c_n$ est à termes positifs et majorée par une suite convergente donc converge et

$$\left(\sum_{k=0}^{+\infty} a_k\right) \left(\sum_{k=0}^{+\infty} b_k\right) \ge \sum_{k=0}^{+\infty} c_k$$

De plus, l'inégalité de droite montre que

$$\left(\sum_{k=0}^{+\infty} a_k\right) \left(\sum_{k=0}^{+\infty} b_k\right) \le \sum_{k=0}^{+\infty} c_k$$

d'où l'égalité.

Proposition 68

Soit $\sum a_n$ et $\sum b_n$ deux séries à termes complexes absolument convergentes, alors leur produit de Cauchy est absolument convergent et

$$\left(\sum_{k=0}^{+\infty} a_k\right) \left(\sum_{k=0}^{+\infty} b_k\right) = \sum_{k=0}^{+\infty} c_k.$$

Preuve — Il est clair que $|c_n| \le \sum_{k=0}^n |a_k| |b_{n-k}|$. D'après la proposition précédente, le produit de Cauchy est absolument convergent. De plus

$$|A_nB_n - C_n| = |\sum_{I} a_k b_{n-k}| \le \sum_{I} |a_k| |b_{n-k}| = \widetilde{A_n} \widetilde{B_n} - \widetilde{C_n}$$

où $J \subset \mathbb{N}^2$ et $\widetilde{A_n} = \sum_{k=0}^n |a_n|, \ \widetilde{B_n} = \dots$

Le terme de droite tend vers 0 donc on obtient le résultat.

Exemple 69 — Soit un réel $x \in]-1,+1[$: la série géométrique $\sum x^n$ converge absolument et

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n,$$

d'où

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{+\infty} x^n\right)^2$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{p+q=n} x^p x^q\right)$$

$$= \sum_{n=0}^{+\infty} (n+1)x^n.$$

REMARQUE 70 — Si les séries ne sont plus absolument convergentes, alors le résultat n'est plus vrai comme le montre l'exemple suivant : $\sum_{k=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$ est convergente (série alternée) mais son produit de Cauchy avec

lui même ne l'est pas car alors $c_n = (-1)^n \sum_{k=1}^{n-1} \frac{1}{\sqrt{k(n-k)}}$ et comme $k(n-k) \le n^2$, on a $|c_n| \ge \frac{n-1}{n}$ et

donc la série est grossièrement divergente.

Un théorème (totalement hors programme dit que l'on peut se contenter de la convergence absolue de l'une des deux séries, l'autre convergeant simplement).

§ 2. Application

Proposition 71

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = BA. Alors

$$\exp(A + B) = \exp(A)\exp(B).$$

En particulier $\exp(A)$ est inversible et $\exp(-A) = \exp(A)^{-1}$.

Preuve — On a défini $\exp(A) = \sum_{n \geq 0} \frac{A^n}{n!}$ série absolument convergente. On va montrer que $\exp(A + B)$ est le produit de Cauchy de $\exp(A)$ et $\exp(B)$.

Pour cela on calcule

$$c_n = \sum_{k=0}^n \left(\frac{A^k}{k!} \frac{B^{n-k}}{(n-k)!} \right) = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} A^k B^{n-k} = \frac{(A+B)^n}{n!}$$

les matrices A et B commutant, la formule du binôme donne la dernière égalité. On en déduit l'égalité désirée.

1.4.3 Utilisation des transformations d'Abel

L'étude des séries est un cas particulier des intégrales. Soit $\sum u_n$ une série. On pose

$$f(t) = \sum_{n>0} u_n \mathbb{1}_{[n,n+1[}.$$

L'intégrale converge (resp. converge absolument) ssi $\int_0^{+\infty} f$ converge (resp. f intégrable sur $[0, +\infty[)$.

Cela nous donne de nouvelles perpectives. En particulier l'intégration par parties! Il faut faire alors attention à la dérivation, car f est continue par morceaux non continues.

Les transformations d'Abel pour les séries correspond exactement à l'intégration par parties avec la correspondante sommes discrètes \rightarrow intégrales (sommes continues) : soit une série de la forme $\sum u_n v_n$

(le produit des fonctions), on pose $S_n = \sum_{k=0}^n v_k$ (l'intégrale de v entre 0 et n), la transformation d'Abel consiste à écrire

$$\sum_{k=0}^{n} u_k v_k = u_0 v_0 + \sum_{k=1}^{n} u_k (S_k - S_{k-1}) = u_0 v_0 + \sum_{k=1}^{n} u_k S_k - \sum_{k=1}^{n} u_k S_{k-1}$$
$$= u_n S_n - \sum_{k=0}^{n-1} (u_{k+1} - u_k) S_k$$

la dérivée de u correspondant à la suite $u_k - u_{k-1}$.

Proposition 72

Soit $\sum u_n v_n$ une série de terme général $u_n v_n$ telle que

- 1. la suite (u_n) est une suite positive décroissante et tend vers 0.
- 2. la série $\sum v_n$ est bornée.

Alors la série $\sum u_n v_n$ est convergente.

Preuve — On écrit : $\sum_{k=0}^{n} u_k v_k = u_n S_n - \sum_{k=0}^{n-1} (u_{k+1} - u_k) S_k$ et les hypothèses impliquent que $u_n S_n$ tend vers 0. Il faut donc prouver la convergence du second terme ; on montre en fait l'absolue convergence. En effet, l'hypothèse (u_n) décroissante implique que $u_n - u_{n+1} \ge 0$ et si M est un majorant de $|S_n|$ on a

$$\sum_{k=0}^{n-1} |(u_k - u_{k+1})S_k| \le \sum_{k=0}^{n-1} (u_k - u_{k+1})M = (u_0 - u_{n+1})M$$

ce qui montre que la somme est majorée donc convergente.

Remarque 73 — Ce résultat n'a d'intérêt que si (v_n) n'est pas de signe constant, sinon, $\sum |v_n|$ bornée donc converge et $|u_nv_n| = o(v_n)$.

Exemple 74 —

- 1. Le théorème 39 se retrouve facilement car $\sum (-1)^n$ est bornée et $|u_n|$ décroissante tend vers 0.
- 2. Soit la série de terme général $u_n = \frac{\cos nx}{n \ln n}$, $x \in \mathbb{R}$. Alors pour $x \notin 2\pi\mathbb{Z}$, on a

$$\left| \sum_{k=0}^{n} \cos kx \right| = \left| \cos \frac{nx}{2} \times \frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}.$$

et $\left(\frac{1}{n \ln n}\right)_{n \geq 1}$ décroissante, positive, tend vers 0. Donc la série $\sum u_n$ converge. La série n'est pas absolument convergente, donc on ne pouvait utiliser le critère de D'Alembert.

REMARQUE 75 — Le changement variables sera rarement efficace (dilaté les segments [n, n+1] compliquera plutôt les choses.

1.5 En pratique

Soit $\sum u_n$ une série.

- 1. On commence par évacuer les cas connus : séries géométriques, téléscopiques, alternées.
- 2. On cherche à prouver l'absolue convergence :
 - (a) $\sum |u_n|$ majorée?
 - (b) Comparaison $\sum |u_n|$ avec une série connue.
 - (c) Règle de D'Alembert : si $|u_n|$ ne s'annule pas à partir d'un certain rang!

- (d) Comparaison série-intégrale.
- 3. si on est dans le cas limite de D'Alembert :
 - (a) Si $\frac{|u_{n+1}|}{|u_n|} \ge 1$, la série diverge grossièrement.
 - (b) Calculer un dl de $\frac{u_{n+1}}{u_n}$ d'ordre 1 et essayer la comparaison logarithmique avec $(\frac{1}{n^{\alpha}})$ (résultats à reprouver!)
- 4. Rien n'a marché ou encore la série n'est pas absolument convergente :
 - (a) Une transformation d'Abel peut résoudre le problème.
 - (b) Décomposer (u_n) en un terme qui absorbe l'oscillation de signe et un terme qui converge absolument.
 - (c) Faire preuve d'imagination (fatigant).
 - (d) Chercher si la réponse n'est pas dans les questions suivantes, et vite passer à la question d'après.

EXEMPLE 76 — Soient (u_n) , (v_n) et (w_n) trois suites réelles telles que $u_n \le v_n \le w_n$ pour chaque $n \ge 0$. On suppose que les séries $\sum_n u_n$ et $\sum_n w_n$ sont convergentes. Démontrer que la série $\sum_n v_n$ est convergente.

1. Pout tout n > N, on a

$$R_N - R_n = \sum_{k=N+1}^n u_k \le \sum_{k=N+1}^n v_k \le \sum_{k=N+1}^n w_k = \widetilde{R}_N - \widetilde{R}_n$$

avec R_n et \widetilde{R}_n les restes d'ordre n des séries $\sum u_n$ et $\sum w_n$.

Les restes R_n et \widetilde{R}_n tendent vers 0: donc pour tout $\varepsilon > 0$, il existe N_0 tel que $n \ge N_0$ implique $|R_n| \le \varepsilon$, $|\widetilde{R}_n| \le \varepsilon$. Pour tout $n > N \ge N_0$

$$|R_n - R_N| \le |R_n| + |R_N| \le 2\varepsilon$$

$$|\widetilde{R}_n - \widetilde{R}_N| \le |\widetilde{R}_n| + |\widetilde{R}_N| \le 2\varepsilon$$

ce qui donne pour tout $n > N \ge N_0 : -2\varepsilon \le \sum_{k=N+1}^n v_k \le 2\varepsilon$.

On comprend alors que le reste de la série $\sum v_k$ tend vers 0, mais pour prouver cela, il faut vérifier que la série est convergente!

2. En posant $S_n = \sum_{k=0}^n v_k$, on a $n \ge N \ge N_0$,

$$|S_n - S_N| \le \varepsilon \quad (*)$$

Pour n fixé, on a pour n > N,

$$|S_n| \le \varepsilon + |S_N|$$
.

La suite (S_k) est donc une suite bornée, on peut en extraire une suite convergente $(S_{\rho(n)})$ de limite notée S. L'inégalité (*) montre alors que

$$|S - S_N| \le \varepsilon$$

et (S_n) converge S.

REMARQUE 77 — Nous avons en fait redémontré un résultat du cours Analyse 1. lequel?