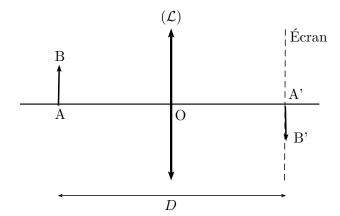
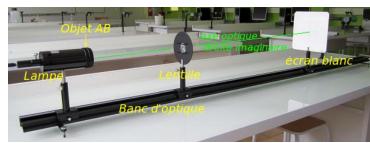
TRAVAUX DIRIGÉS D'OPTIQUE 2 :

Lentilles minces et association

École Centrale Pékin

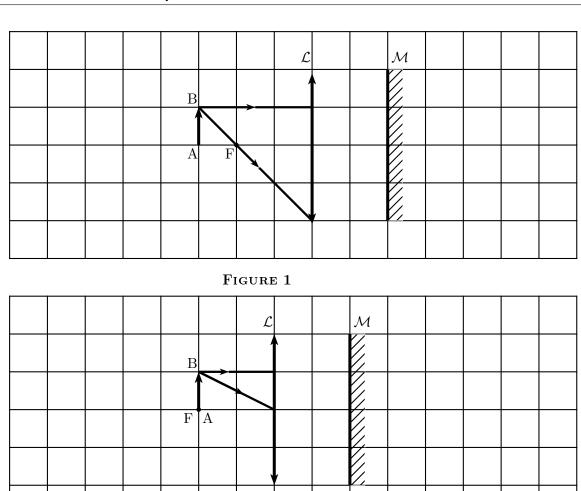

Année 3


Application du cours

EXERCICE 1 : Condition de projection et méthode de Bessel

On cherche à faire l'image A'B' d'un objet AB sur un écran à l'aide d'une lentille mince convergente (\mathcal{L}) , de distance focale f' et dont la position est repérée par son centre optique O. L'objet et l'écran sont fixes et distants de D: seule la position de la lentille (\mathcal{L}) peut être modifiée.

- 1. Déterminer l'équation du second degré dont $x = \overline{AO}$ est solution.
- 2. En déduire qu'il existe une inégalité entre D et f' pour que l'on puisse conjuguer l'objet et l'écran avec la lentille. Cette inégalité se nomme condition de projection.
- 3. Lorsqu'il existe deux positions x_1 et x_2 de la lentille qui conjuguent l'objet et l'écran, montrer que la mesure de $d = |x_2 x_1|$ et la connaissance de D permet d'en déduire f'.
- 4. Que se passe-t-il s'il n'y a qu'une seule position nette?



S'ENTRAÎNER

EXERCICE 2: Autocollimation

AB est un objet, \mathcal{L} une lentille mince convergente et \mathcal{M} un miroir plan dont la normale est parallèle à l'axe optique de \mathcal{L} . La distance focale de \mathcal{L} est égale à 2 unités de longueur du quadrillage. Soit A_1B_1 l'image donnée par la lentille \mathcal{L} de AB, puis A_2B_2 l'image donnée par le miroir \mathcal{M} de A_1B_1 et enfin A'B' l'image finale que donne \mathcal{L} de A_2B_2 .

1. Pour chaque figure 1, 2 et 3, construire les images A'B' à partir des deux rayons partant de B.

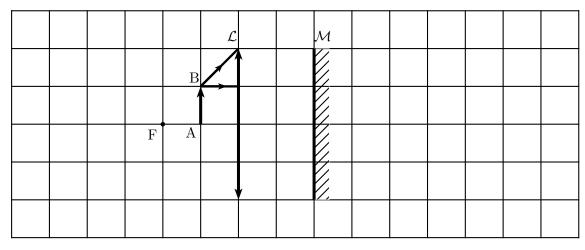


FIGURE 3

- 2. Retrouver dans le cas de la figure 1, par le calcul en utilisant les relations de conjugaison et le grandissement, la position des points images A' et B'; on prendra le centre optique de la lentille comme origine : le point B est donc en (-3, +1).
 - <u>Indication</u>: on déterminera les positions des points des images intermédiaires.
- 3. Donner un argument simple permettant de déterminer le grandissement transversal du système sans faire de calcul dans les trois cas de figure. On donnera la valeur algébrique de ce grandissement.
- 4. Dans la configuration de la figure 2, l'image et l'objet sont dans le même plan. Que se passerait-il si on déplaçait le miroir, en conservant son plan perpendiculaire à l'axe optique de la lentille?

- 5. Toujours dans la configuration de la figure 2, que se passerait-il si on inclinait le miroir (c'est-à-dire, si on écartait sa normale de l'axe optique de la lentille)?
- 6. Conclusion : pourquoi dit-on que l'ensemble des 2 éléments (objet AB et lentille \mathcal{L}) dans la configuration de la figure 2 constitue un collimateur (un collimateur est un dispositif qui réalise un objet à l'infini)?
- 7. Comment procéder pratiquement pour déterminer la distance focale d'une lentille mince convergente avec cette méthode?