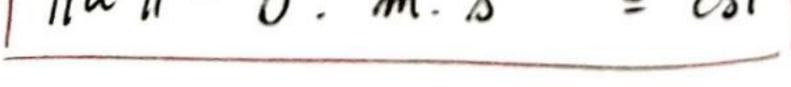
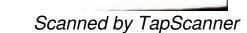
Fds TD2 - Correction Ex1: Mouvement uniforme 1) On a t. z. on remplace dans l'expression de y: $y = 4\left(\frac{x}{z}\right)^2 - 4\left(\frac{x}{z}\right)$ y = x² - 2x (est une purabole where and the for $2) V_x = \frac{dx}{dt} = 2$ donc $\|\vec{V}\| = \|V_x^2 + V_y^2\| =$ $V_{\gamma} = \frac{d\gamma}{dt} = 8t - 4$ $= (4 + (8t - 4)^2)$ $= 1 4 + 64t^2 - 32t + 16$ $\|\vec{v}\| = \int 64t^2 - 32t + 20$ 3) $a_x = \frac{dv_x}{dt} = 0$ donc //ā/ = /a, ray $a_{\gamma} = \frac{dv_{\gamma}}{dt} = 8$ = 182' $\|\bar{a}\| = 8 \dots \bar{s}^2 = cst$



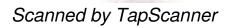


2 4) On differencie les expressions de x et y: $\begin{cases} dx = 2 dt \\ dy = 8t dt - 4 dt \end{cases}$

On a alors dS = dx dy = 2dt (8t dt - 4dt) $dS = 8dt^{2} (2t - 1)$

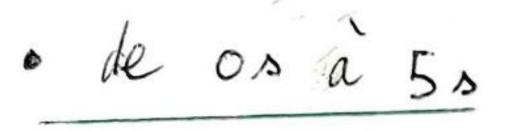
Ex 2: Test d'accélération d'une voiture

A) On a
$$\vec{a} = a_0 \vec{e_x}$$
 avec $a_0 = \cot$
donc $\vec{x} = a_0$ et $\vec{x} = a_0 t$ car $\vec{V}_0 = \vec{0}$ et $\vec{a} = \frac{dV}{dt}$
Ensuite $x = \frac{1}{2}a_0t^2$ car $x_0 = 0$ et $\vec{x} = \frac{dx}{dt}$
On a donc $a_0 = \frac{2x}{t^2}$ et $\left[a_0 = \frac{2D}{(t_D)^2}\right]$
 $\underline{AN}: \underline{a_0} = \frac{2 \times 180}{26,6} = \frac{0.509 \text{ m} \cdot \text{s}^{-1}}{26,6}$
De plus $V_D = \dot{x}(t_D) = a_0 t_D$
 $\underline{AN}: V_D = 0.509 \times 26.6 = 13.5 \text{ m} \cdot \text{s}^{-1}$



2) Dans cette deuxième partie l'acceleration est négative. $\vec{a} = \vec{a}_{1} \vec{e}_{x}$ avec $a_{1} < o$ 3 Ainsi $\ddot{x} = a_1 et \dot{x} = a_1 t + V_D (car \dot{x}(0) = V_D)$ Et donc $X = \frac{1}{2}a_{1}t^{2} + v_{5}t$ (on prend D comme nouvelle origine donc x(0)=0) Largue le vehicule s'avrête $\dot{x}(t) = o$ donc en appelant A le point où la voiture s'arrête : $a_1 t_A + v_D = 0 \quad \langle = \rangle \quad t_A = -\frac{v_D}{a_1}$ $et \times (t_A) = \frac{1}{2}a_1\left(-\frac{V_D}{a_1}\right)^2 + V_D\left(-\frac{V_D}{a_1}\right)$ $X(F_{A}) = \frac{1}{2} \frac{\sqrt{2}^{2}}{a_{1}} - \frac{\sqrt{2}^{2}}{a_{1}}$ $X(F_A) = -\frac{1}{2} \frac{V_D^2}{A}$ $AN: X(t_A) = -\frac{1}{2} \frac{13,5}{-7} = 13m$ La voiture met 13 m à s'arrêter.

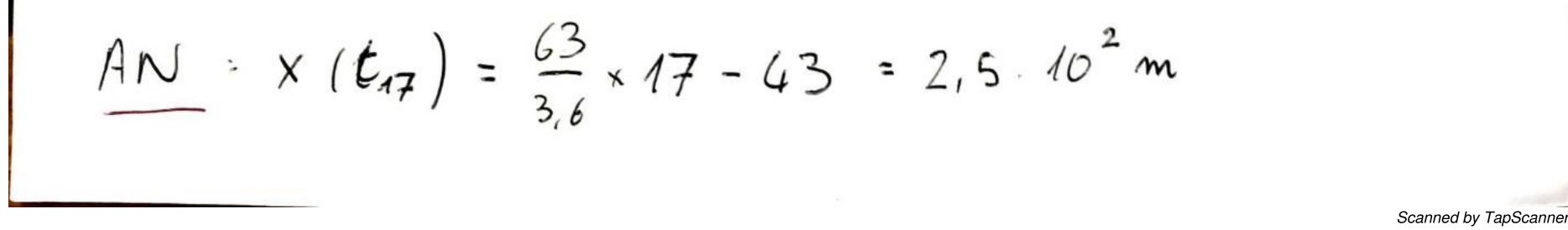
Ex3: Analyse de graphiques



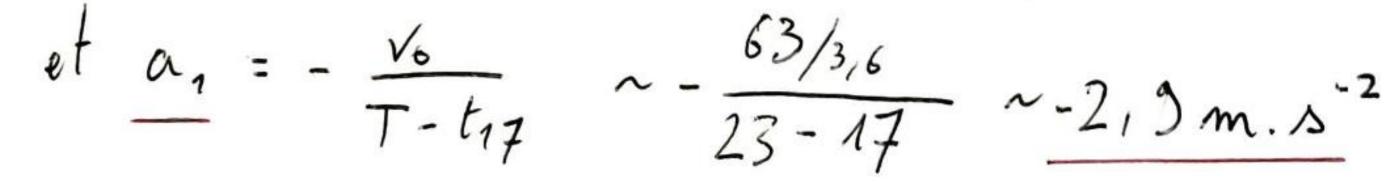
 $\begin{cases} a = ost = a_{0} \\ v = a_{0}t \\ x = \frac{1}{2}a_{0}t^{2}. \end{cases}$ La viterre est linéaire et la position parabolique $\begin{pmatrix} V(0) = 0 \\ X(0) = 0 \end{pmatrix}$

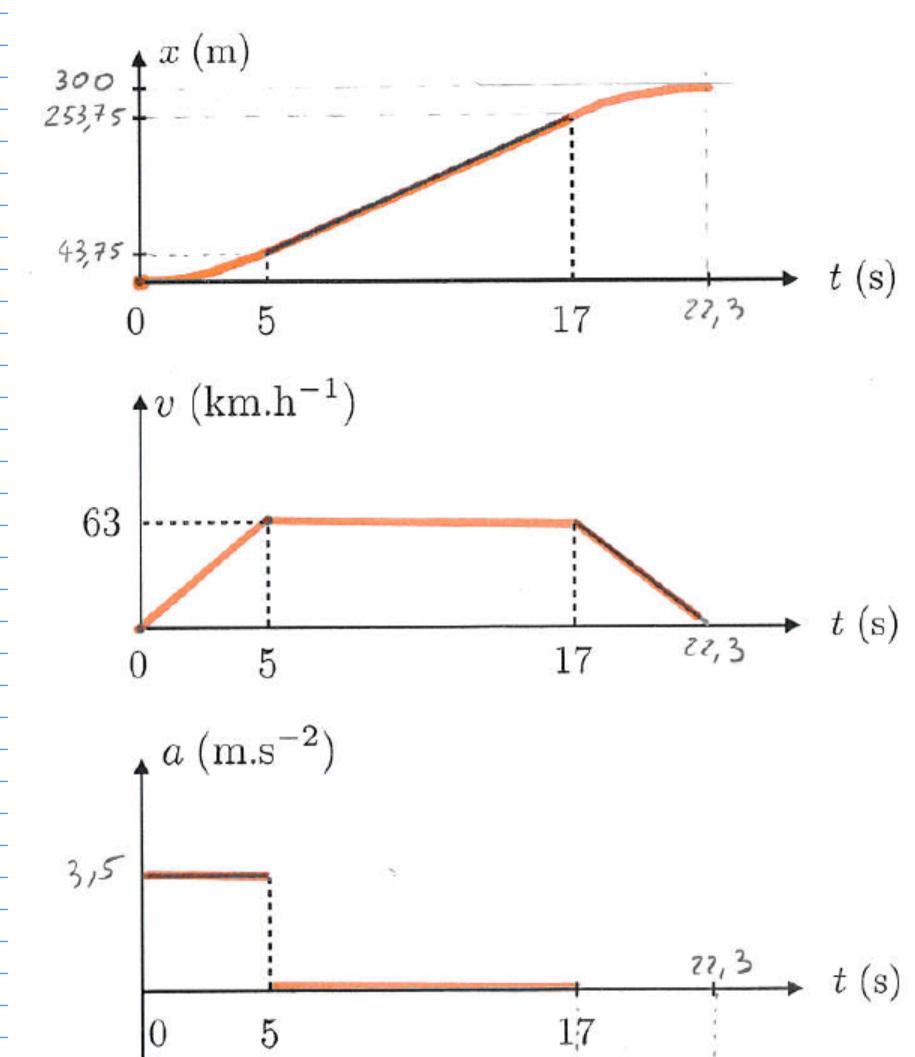
Ľ)

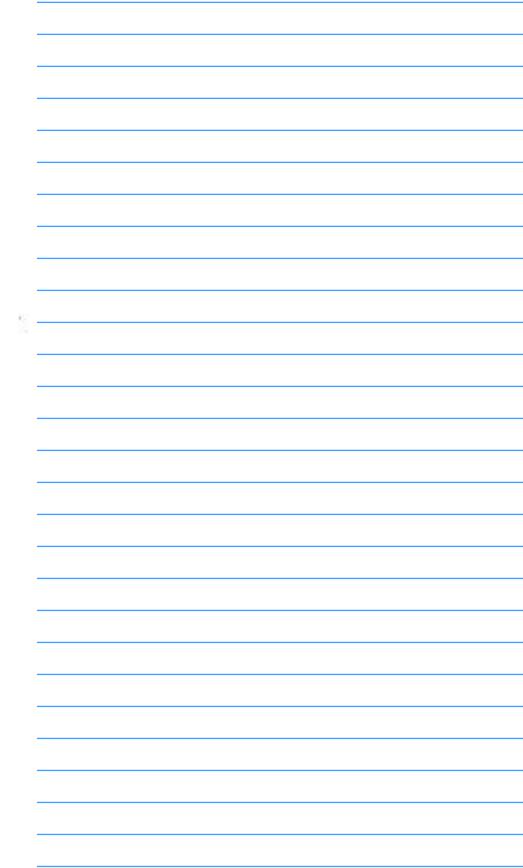
On a $V(t_5) = 63 = a_0 t_5$ donc $a_0 = AN$: $a_0 = \frac{63 \times \frac{1000}{3600} = 3,5 \text{ m} \cdot 5^{-2}}{5}$ $V(f_{\rm b})$ ts -> $AN = X(t_5) = \frac{1}{2} \cdot \frac{3}{5} \cdot 5^2 = \frac{4}{4} m$ $et | \times (t_5) = \frac{1}{2}a_0 t_5^2$ · de 5 s à 17s On a une viterse constante $\begin{cases} x(t) = \sqrt{2}t + B \\ \sqrt{1}t = \sqrt{2}t \\ \alpha(t) = \sqrt{2}t \end{cases}$ donc V6 = 63 km. h⁻¹ De plus $X(t_5) = \sqrt{5t_5 + B}$ donc $B = \chi(t_5) - At_5$ AN: B = 44 $\frac{63}{3,6} = -43$ m x est linéaire



• de
$$17 \times \overline{a}$$
 T
V est linéaux donc a est constant et x parabolique
 $a = a_A = ost$
 $v = a_A t + v_A$
en $t = t_{AF}$, $v = v_0$ et en $t = T$, $v = o$ donc
 $v(t) = -\frac{v_0}{T - t_{AF}} (t - t_{AF}) + v_s$
donc $x(t) = -\frac{v_0}{T - t_{AF}} (\frac{t - t_{AF}}{2})^2 + v_s t + v_A$
On $a t = 47s$ $\frac{x(t) = 2.5 \cdot 40^2 m}{T - t_{AF}}$
 $d'au = x(t) = -\frac{v_0}{T - t_{AF}} (\frac{t - t_{AF}}{2})^2 + v_0 (t - c_{AF}) + 2.5 \cdot 40^2 m$
Dr plus $x(t) = 300m$
Donc $-\frac{v_0}{T - t_{AF}} (\frac{T - t_{AF}}{2})^2 + v_0 (T - t_{AF}) + 2.5 \cdot 40^2 = 300$
 $= > \frac{v_0}{2} (T - t_{AF}) = 50$
 $= > T = \frac{50}{(\frac{63/3.6}{2})} + 47 = 23.8$





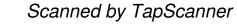


	-3,3	
	- 3, 5	

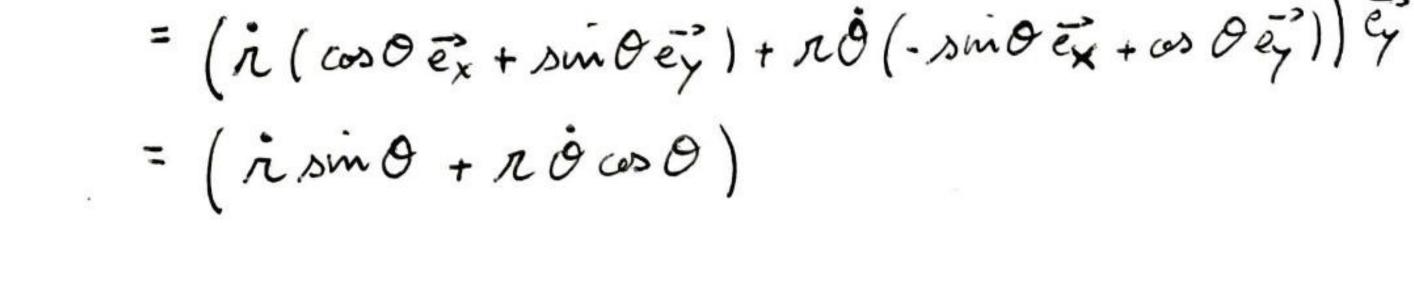
Ex4: Du déplacement élémentaire au volume $d\vec{S}_{z} = rd\theta dr \vec{u_{z}}$ 1) En cylinchique don = drei + r do eo + dz ez $dS_3 = \pi d\pi d\theta \quad \tilde{a} \quad 3 = cst$ $dS_0 = dr d\theta$ $\tilde{a} \theta = ost$ r $dS_n = \Lambda d\theta dz$ a $\Lambda = cost$ dZ = rdr dOdz $\vec{dS}_r = rd\theta dz \vec{u_r}$ 2) a. S_1 Saturbe = 25, + S_2 h R + S_2 S_1 = $\int dS_2 = \int n dn d\theta$ $Cn \quad peut \quad séparer \quad les \quad intégrales .$ $S_{1} = \int_{R=0}^{R=R} \int_{Q=0}^{Q=2\pi} dQ = \pi R^{2}$ $S_{n=0} \quad Q=0$ (n = R = ost) $S_2 = \iint dS_n = \iint dS_n = \iint dO = 0$ $\int dO = 0$ Ami Scylinche = 2TTR² + 2TTRh

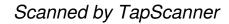
 $V = \iint dz = \iint r dr d\theta dz$ Les trois paramètres sont indépendant donc on peut séparer les intégrales : $V = \int_{R=0}^{2\pi} r dr \int_{0=0}^{2\pi} d = \frac{R^2}{2} \times 2\pi \cdot h = \frac{\pi R^2 h}{2}$ Ex 5 : Satellite artificiel 1) en P: 0=0 et 1p= 8000 km

$$\begin{aligned}
\mathcal{R}_{p} &= \frac{P}{A + e \cos \theta_{p}} = \frac{P}{A + e} \\
en A : \theta_{A} &= \pi \text{ et } \mathcal{R}_{A} = 24000 \text{ lm} \\
\mathcal{R}_{A} &= \frac{P}{A + e \cos \theta_{A}} = \frac{P}{A - e} \\
Om a donc \begin{cases} e &= \frac{\mathcal{R}_{A} - \mathcal{R}_{p}}{\mathcal{R}_{A} + \mathcal{R}_{p}} \\
end for e &= \frac{\mathcal{R}_{A} - \mathcal{R}_{p}}{\mathcal{R}_{A} + \mathcal{R}_{p}} \\
end for e &= \frac{\mathcal{R}_{A} - \mathcal{R}_{p}}{\mathcal{R}_{A} + \mathcal{R}_{p}} \\
end for e &= \frac{\mathcal{R}_{A} - \mathcal{R}_{p}}{\mathcal{R}_{A} + \mathcal{R}_{p}}
\end{aligned}$$



(8) 2) on = rei (3=0) $\vec{v} = \vec{n}\vec{e_n} + \vec{n}\vec{0}\vec{e_0}$ $\left(\frac{d\vec{e_n}}{dt} = \hat{\vec{0}}\vec{e_0}\right)$ $\vec{a} = (\vec{n} - n\vec{o}^2)\vec{e_n} + (2\vec{n}\vec{o} + n\vec{e})\vec{e_o}$ à est seulement selon $\vec{e_n}$ donc $2\vec{n}\vec{\Theta} + n\vec{\Theta} = 0$ donc $\mathcal{I}(2\dot{n}\dot{\partial} + \mathcal{I}\dot{\partial}) = \dot{\partial} = 2\mathcal{I}\dot{n}\dot{\partial} + \mathcal{I}^2\dot{\partial}$ $O_n 2r\dot{n}\dot{O} + r^2\ddot{O} = \frac{d}{dt}(r^2\dot{O}) donc r^2\dot{O} = cst$ $n^2 0 = c$ entrout point. En particulier en P: $\theta_{p} = 0$, $\pi_{p} = 8000 \text{ km}$, $V_{p} = \pi_{p}\theta_{p} = 8640 \text{ km} \cdot \text{s}^{-1}$ $C = \pi_p(\pi_p 0) = 6.9.10^7 m^2 s^{-1}$ Amsi $3) C = \pi^2 \dot{\theta} = \pi V$ $A \, \text{misi} \, V_{A} = \frac{C}{\pi_{A}} = 2880 \, \text{m} \cdot \text{s}^{-1}$ $(1) \vec{v} = \vec{n}\vec{e_n} + \vec{n}\vec{e_0}$ Vest selon éx seulement donc V. ey = 0 = (rentroed) ey





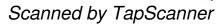
De plus
$$n = \frac{P}{1 + e \cos \theta}$$
 donc $\dot{n} = \frac{\partial P e \sin \theta}{(1 + e \cos \theta)^2}$

Ami
$$0 = \frac{0 pe sm^2 \theta}{(1 + e \cos \theta)^2} + \frac{0 p \cos \theta}{1 + e \cos \theta}$$

Soit
$$\frac{e \sin^2 \theta}{A + e \cos \theta} + \cos \theta = 0 \iff e \sin^2 \theta + \cos \theta (1 + e \cos \theta) = 0$$

 $Z => e (1 - \cos^2 \theta) + \cos \theta + e \cos^2 \theta = 0$
 $Z => [\cos \theta] = -e$
A insti $\pi_B = \frac{P}{A + e \cos \theta_B} = \frac{P}{A - e^2} = \frac{2nnnp}{A - (n - np)^2}$
 $A = \frac{(n - np)^2}{(n + np)^2}$

(A TP) $\mathcal{\Lambda}_{B} = \frac{2n_{A}n_{P}}{n_{A} + n_{P}} \frac{(n_{A} + n_{P})^{2}}{4n_{A}n_{P}}$ Finalement $\pi_{B} = \frac{\Lambda_{A} + R_{P}}{2} = 16000 \text{ km}$.



Exercice 6 : Mouvement d'un point sur une roue

1) $\vec{OT} = \vec{OT} + \vec{TG} + \vec{GT}$ = $x\vec{e_x} + \vec{ne_y} + \vec{ne_x}$

 $\overline{v} = \frac{don}{dt} = \frac{dx}{dt} \cdot \overline{e_x} + \frac{dr}{dt} \cdot \overline{e_y} + \frac{dr}{dt} \cdot \overline{e_t} + r \cdot \frac{d\overline{e_t}}{dt}$ ici $r = ost donc dr = o et en = coo dex + sin <math>\partial e_{j}^{2}$ den = - O sinder + Ousoer Amni v = xex + roe

$$\begin{cases} \vec{e_{x}} = \cos \Theta \vec{e_{x}} + \sin \Theta \vec{e_{y}} \iff \left\{ \vec{e_{y}} = \sin \Theta \vec{e_{x}} + \cos \Theta \vec{e_{x}} \\ \vec{e_{x}} = \cos \Theta \vec{e_{x}} - \sin \Theta \vec{e_{x}} \\ \vec{e_{x}} = \cos \Theta \vec{e_{x}} - \sin \Theta \vec{e_{x}} \\ \vec{e_{x}} = \cos \Theta \vec{e_{x}} - \sin \Theta \vec{e_{x}} \\ \vec{e_{x}} = \frac{1}{2} \cos \Theta \vec{e_{x}} + \frac{1}{2} \sin \Theta \vec{e_{x}} + \frac{1}{2} \cos \Theta \vec{e_{x}} + \frac{1}{2} \cos \Theta \vec{e_{x}} \\ \vec{e_{x}} = \frac{1}{2} \sin \Theta \vec{e_{x}} + \frac{1}{2} \sin \Theta \vec{e_{x}} + \frac{1}{2} \sin \Theta \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} \\ \vec{e_{x}} = \frac{1}{2} \sin \Theta \vec{e_{x}} + \frac{1}{2} \sin \Theta \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} \\ \vec{e_{x}} = \frac{1}{2} \sin \Theta \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} \\ \vec{e_{x}} = \frac{1}{2} \sin \Theta \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} + \pi \vec{\Theta} \vec{e_{x}} \\ \vec{e_{x}} = (\vec{E_{x}} \cos \Theta - \pi \vec{\Theta}^{2}) \vec{e_{x}} + (\pi \vec{\Theta} - \vec{x} \sin \Theta) \vec{e_{x}} \\ \vec{e_{x}} = (\vec{E_{x}} \cos \Theta - \pi \vec{\Theta}^{2}) \vec{e_{x}} + (\pi \vec{\Theta} - \vec{x} \sin \Theta) \vec{e_{x}} \\ \vec{e_{x}} = (\vec{E_{x}} \cos \Theta - \pi \vec{\Theta}^{2}) \vec{e_{x}} + (\pi (-2\alpha) - 6 \sin (-10t^{2})) \vec{e_{x}} \end{aligned}$$

