

Aircraft Design Annexes

D.Breyne Dernière révision 7/11/19

2017 - 2019

Réservé uniquement aux enseignants et élèves de l'Ecole Centrale Paris Reproduction interdite

Annex	1. The Design Process Milestones	5
1.1	List of requirements	5
1.2	Conceptual design	6
1.3	Preliminary design	7
1.4	Detail design	12
1.5	Next phases	14
Annex	2. Common values	15
Annex	3. Forces and moments	17
Annex	4. The standard atmosphere	18
4.1	Introduction	18
4.2	Assumptions	18
4.3	Standard temperature	18
4.4	Standard pressure	19
4.5	Standard density	19
4.6	Speed of sound	19
4.7	Notes	19
4.8	The standard atmosphere up to 100.000 m	20
4.9	Table of the standard atmosphere	21
Annex	5. Airspeed	22
5.1	Introduction	22
5.2	Pitot-static system	22
5.3	Airspeed indicator	22
5.4	Altimeter and Vertical airspeed indicator	23
5.5	Pitot-static system on the Airbus A330-200	23
5.6	Airspeed relationships	24
5.7	Example	25
Annex	6. Drag breakdown	26
Annex	7. Optimisation process	27
7.1	Cruising speed (propeller driven aircraft)	27
7.2	Stall speed	28
7.3	Landing field length	28
7.4	Takeoff field length (propeller driven aircraft)	29
7.5	Climb performances (propeller driven aircraft)	31
Annex	8. Optimisation process (example)	32
8.1	Requirements (input data)	32
8.2	Equations	33
8.3	Table	33
8.4	Chart	35
Annex	9. Airworthiness requirements	36
9.1	Introduction	36
9.2	Miscellaneous	38
9.3	Structure – Manoeuvring load factors	39
9.4	Performances- Stall speed	40
Annex	10. Materials in aviation	41
10.1	Percentage of composite	41
10.2	Current aircraft	41

Annex	11.	The power-plant	.42					
11.1	Introdu	ction	.42					
11.2	Summ	ary	.42					
11.3	Thrust		.43					
11.4	Propul	sion efficiency	.43					
11.5	Engine	technology	.44					
Annex	x 12. Lifting Surface Design Parameters							
12.1	Wing v	ertical position on the fuselage	.50					
12.2	Lifting	surface aspect ratio	.51					
12.3	Lifting	surface sweep angle	.52					
12.4	Lifting surface taper ratio							
12.5	Lifting	surface dihedral angle	.54					
Annex	13.	Lifting surface airfoil profile	.55					
13.1	Introdu	ction	.55					
13.2	Aerody	namic performance	.55					
13.3	Geome	etric parameters that affect the performance of an airfoil	.57					
Annex	14.	Lifting surface airfoil selection	.58					
Annex	15.	The high lift devices	.59					
15.1	Trailing	gedge aerodynamic devices	.59					
15.2	Leadin	g edge aerodynamic devices	.60					
15.3	Effects	of high lift devices	.60					
Annex	16.	The aerodynamic centre	.61					
16.1	Aerody	namic centre / Symmetric airfoil	.61					
16.2	Aerody	namic centre / Cambered airfoil	.61					
Annex	17.	Introduction to stability	.62					
17.1	Static s	stability	.62					
17.2	Dynam	ic stability	.62					
17.3	Stabilit	y about the Axis	.63					
Annex	18.	Weight estimation	.64					
18.1	Wing, V	N _w (3)	.64					
18.2	Horizo	ntal Tail, W _{HT} (3)	.64					
18.3	Vertica	I Tail, WvT	.64					
18.4	Canaro	I Surface, W _{crd} (3)	.64					
18.5	Wingle	ts, W _{wgl}	.64					
18.6	Fusela	ge, W _{fus} (3)	.64					
18.7	Nacelle	e, W _{nac}	.64					
18.8	Tailboo	om, W _{tb}	.65					
18.9	Landin	g gear (main), W _{LGM} (6)	.65					
18.10	Land	Jing gear (auxiliary), W _{LGA} (6)	.65					
18.11	AT Truest 43 Thread 43 1.5 Engine technology 44 1.5 Engine technology 44 1.6 Engine technology 44 1.7 Engine technology 44 1.8 Engine technology 44 2.1 Wing vertical position on the fuselage 50 2.2 Lifting surface aspect ratio 53 2.3 Lifting surface dipedral angle 52 2.4 Lifting surface airfoil profile 55 3.1 Introduction 55 3.2 Lifting surface airfoil profile 55 3.3 Geometric parameters that affect the performance of an airfoil 57 nmex 13. Lifting durface airfoil selection 58 5.1 Trailing edge aerodynamic devices 59 5.2 Leading edge aerodynamic devices 60 5.3 Effects of high lift devices 60 5.4 Aerodynamic centre 61 6.1 Aerodynamic centre / Symmetric airfoil 61 6.2 Aerodynamic centre / Symmetric airfoil 62							
18.12	Prop	eller, W _{prop}	.66					
18.13	Prop	eller Shaft, W _{PS}	.66					
18.14	Fuel	System, W _{FSyst} (3)	.66					
18.15	Con	trol System, W _{CSyst} (3)	.66					
18.16	Elec	trical System, W _{ESyst} (6)	.66					
18.17	Hyd	raulic System, W _{HSyst} (6)	.66					

, ox 10		
Annex 19	A Inboard isometric drawings	68
18.21	Pressurization, W _{press} (3)	67
18.20	Air Conditioning, W _{AirCond} (3)	66
10.19	Furnishings, wfum	00
10 10		66
18.18	Avionics. Winst (6)	66

Annex 1. The Design Process Milestones

1.1 List of requirements

Non exhaustive list of requirements

Do	ominant design criteria
Mi	ssion profile
	Takeoff: altitude
	Climb: time, altitude
	Cruise: altitude, maxi range condition, maxi endurance condition,
	Loiter: time, altitude
	Descent: time, altitude
	Landing: altitude
<u>Pe</u>	erformance
	Minimum flight speed
	Takeoff: runway surface, altitude min & max
	Climb: minimum rate of climb, minimum climb slope,
	Cruise: altitude, flight speed
	Landing: runway surface, altitude min & max
	Ceiling
	Performance in turn
	Maximum level llight speed
<u>PC</u>	Turna of engine
	Type of engine
<u>U</u>	
	Electronics (Maximum power, voltage, intensity)
	Droppable load
	Comora
	Maximum dansity
	Maximum density
F	lel system
Ind	struments Avionics Eurnishing
Δi	r conditioning
Co	nete
	Market price
	Operating costs
Мі	scellaneous
111	Airworthiness requirements
	Ecological requirements
	Material
	Safety

1.2 Conceptual design

Phases of the Aircraft Conceptual Design

Check and/or adjustment of Customer's specifications Synthesis of Airworthiness Requirements Iterative process in order to find the optimal design (according to the specifications) General layout definition Geometry definition Wing Tails (Horizontal Tail, Vertical Tail, Canard Surface, Butterfly Tail, ...) Fuselage (according to the Payload, Useful weight and Useful Volume definition) Landing gear (Type, Lateral, Vertical and Longitudinal position) **Propulsion definition** Engine selection (Type of engine & List of engines to be used) Fuel system (mass & volume) Electric system (type & mass & volume of the batteries) Performance (Stall speed, Takeoff distance, Maximum Rate of Climb, Cruise speed, Landing distance) Wing loading definition Power loading definition Weight analysis Empty weight, Useful weight, Payload, Fuel weight, Maximum Takeoff weight Aerodynamic analysis Global lift & drag 2D Model 3-View drawing **Cross Sections** 3D Model Visual check Marketing analysis Estimated Market Price Validation **Reverse Engineering** Statistical Analysis Miscellaneous Reports Meetings **Final Report**

1.3 Preliminary design

Phases of the Aircraft Preliminary Design

<u>G</u>	om	<u>etry</u>
	<u>Lif</u>	ting surfaces (Wing, Horizontal Tail, Vertical Tail, Canard Surface, Butterfly Tail, …)
		Planform optimization (span, twist, dihedral, sweep)
		Position (incidence, vertical, longitudinal,)
	_	Fuel volume
	<u>Fu</u>	selage
		Shape optimization
		Fuel Volume and/or Battery volume
		nding Gear (Main & Auxiliary)
		Tire size according to the runway surface
		Shock absorber (type, dimension)
	Na	Length (propeller ground clearance, …)
	110	
	Ot	hers
		Hulls, Tailboom, Pylon, Ventral Fin
<u>3</u>) Mc	<u>odel</u>
	Ex	port to CAD
Pr	opu	lsion
	Un	installed Engine power Vs Flight speed & Flight Altitude
	Pro	opeller characteristics (diameter, pitch angle (range), Tip speed,)
Ae	rod	ynamic analysis (for different flight conditions)
	<u>Dra</u>	ag (for each components & interference drag & trim drag & wave drag)
	<u>Lif</u>	Airfoil optimization (airfoil performance) t (for each components)
		Airfoil optimization (airfoil performance)
	<u>Co</u>	ntrol surface definition (ailerons, leading edge, trailing edge devices, airbrakes, …)
		Type & position
	Ae	Dimensions (chord & span & deflection) <u>rodynamic</u> centre
		Lifting surface
		Wing & Fuselage
		Airplane
		- Neutral point stick fixed
		- Neutral point stick free
		- Maneuver point stick fixed
	Qu	- Maneuver point stick free <u>iality</u>
		Area rules
		Streamline body check

Cont.

	<u>Graph</u> report
	Drag polar
	- Flaps TO, gear down
	- Flaps TO, gear up
	- No flaps
	- Flaps Ld, gear up
	- Flaps Ld, gear down
	- One Engine Inoperative (OEI)
	- Normal flight condition @ different CG position
	Drag report
Pe	Lift Vs Angle of Attack erformance analysis (for different weight & CG position)
	Mission specification
	Stall
	Deep stall
	Takeoff
	Climb
	Cruise
	Descent
	Landing
	Ground effect
<u>Sy</u>	<u>/stems</u> (Fuel, Electric, Hydraulic, …)
	<u>Fuel</u> system
w	Tank number & Volume & Position eight Analysis
	Weight of each component
	Weight breakdown
	CG Position of each components
	CG Position
	CG Range
	CG Enveloppe
	Moment of Inertia
	V-n Diagram
	Structural loads on the Fuselage
	Structural loads on the Wing
	Structural loads on the Concret Surface
	Structural loads on the Varticel Tail
	Structural loads on the Landing Goor
	Structural loads on Control Surfaces
	Structural loads on Control Sustem
	Structural loads on Control System

Сс	ont.
	Stability & Control
	Longitudinal stability derivatives
	Steady state lift, drag, moment and thrust coefficients
	Speed derivatives
	Angle-of-attack derivatives
	Rate of angle-of-attack derivatives
	Pitch rate derivatives
	Lateral-directional stability derivatives
	Angle-of-sideslip derivatives
	Rate of angle-of-sideslip derivatives
	Roll rate derivatives
	Yaw rate derivatives
	Longitudinal control derivatives
	Stabilizer control derivatives
	Elevator control derivatives
	Ruddervator control derivatives
	Canard control derivatives
	Canardvator control derivatives
	Elevon control derivatives
	Elevator tab control derivatives
	Ruddervator tab control derivatives
	Canardvator tab control derivatives
	Elevon tab-control derivatives
	Lateral-directional control derivatives
	Aileron derivatives
	Spoiler derivatives
	Differential stabilizer derivatives
	Rudder derivatives
	Rudder tab derivatives
	Aileron tab derivatives
	Hinge moment derivatives
	Aerodynamic balancing
	Elevator stick force diagram
	Aileron stick force diagram
	Rudder stick force diagram
	Trim diagram

Сс	ont.						
	Dynamic & Control						
	Longitudinal & Lateral-directional dynamic characteristics						
Airplane transfer functions							
Speed-to-Elevator							
	Angle-of-Attack-to-Elevator						
	Pitch-Angle-to-Elevator						
	Speed-to-Ruddervator						
	Angle-of-Attack-to-Ruddervator						
	Pitch-Angle-to-Ruddervator						
	Speed-to-Stabilizer						
	Angle-of-Attack-to-Stabilizer						
	Pitch-Angle-to-Stabilizer						
	Speed-to-V-Tail						
	Angle-of-Attack-to-V-Tail						
	Pitch-Angle-to-V-Tail						
	Speed-to-Elevon						
	Angle-of-Attack-to-Elevon						
	Pitch-Angle-to-Elevon						
	Speed-to-Canardvator						
	Angle-of-Attack-to-Canardvator						
	Pitch-Angle-to-Canardvator						
	Speed-to-Canard						
	Angle-of-Attack-to-Canard						
	Pitch-Angle-to-Canard						
	Angle-of-Attack-to-Canardvator						
	Human pilot						
	Sideslip-Angle-to-Aileron						
	Bank-Angle-to-Aileron						
	Heading-Angle-to-Aileron						
	Sideslip-Angle-to-Rudder						
	Bank-Angle-to-Rudder						
	Heading-Angle-to-Rudder Cost Analysis						
	Research development test and evaluation cost						
	Prototype cost						
	Manufacturing and acquisition costs						
	Operating / Life cycle costs						
	Marketing Analysis						
	Market price						
	Comparative analysis						
	Optimization						
	Pollution / Quality analysis						

Cont.

Validation

Flight simulator

Comparative analysis

Final checks

Compliance with the specifications

Compliance with the regulation

Compliance with historical value

Compliance with rules of thumbs (blanket of the horizontal tail - deep stall)

Miscellaneous

Reports

Meetings

Final Report

Unusual concept (Wind tunnel test, ...)

1.4 **Detail design**

Phases of the Aircraft Detail Design

New Techniques Validation of processes

Airplane

3D Model of each components (position, dimensions, ...) to check the interaction between components

Lifting surfaces (Wing, Horizontal tail, Vertical Tail, Canard surface, Winglets, ...) Stress analysis Spar sizing **Ribs sizing** Skin sizing 2D / 3D drawings Control surfaces (Ailerons, Flaps, Elevator, Rudder, Canarvator) Stress analysis Spar sizing Ribs sizing Skin sizing 2D / 3D drawings Engine Mount Stress analysis Sizing 2D / 3D drawings Engine Cover Stress analysis Skin sizing 2D / 3D drawings Engine Cooling Sizing 2D / 3D drawings Bodies (Fuselage, Nacelle, Tailboom, ...) Stress analysis Frame sizing Stringer sizing Skin sizing Bulkhead sizing 2D / 3D drawings Pylon

Stress analysis

Spar sizing

Ribs sizing

Skin sizing

2D / 3D drawings

Cont.

Landing gear (Main & Auxiliary) Stress analysis Sizing 3D drawings 2D drawings Control System Stress analysis Sizing 3D drawings 2D drawings Systems (Electric, Pneumatic, Hydraulic, Fuel, Water, Starter, APU, Anti-Ice, ...) Sizing 3D drawings 2D drawings Instrument Panel Sizing 3D drawings 2D drawings **Furnishing** Sizing 3D drawings 2D drawings APU Mount Stress analysis Sizing 3D drawings 2D drawings Canopy Sizing 3D drawings 2D drawings Tools & jigs Documents List of parts Manuals (Flight, Maintenance, ...)

1.5 Next phases

Life cycle of the aircraft

Testing Prototyping Handling Manufacturing Assembling Testing Storing (Distribution) (Installation) Operation Maintenance Upgrading

Removing

Disposal (recycling)

			MCR01	Diamond DA42	A320-200	A330-200	A380-800
General	Category	-	Light	Light	Airliner	Airliner	Airliner
	Seat Capacity	-	2	4	150 - (2) 180 - (1)	253 - (3) 380 - (1)	525 - (3) 644 - (2) 853 - (1)
Weight	Empty	kg	230	1268	41 300	119 600	270 364
	Fuel	kg	58	157	23 700	109 185	253 983
	Payload	kg	255	412	19 700	49 000	83 000
	Maximum	kg	490	1700	75 900	238 000	569 000
Weight Ratio	W _{Empty} /W _{MxTO}	-	0.469	0.746	0.544	0.503	0.475
	W _{Fuel} /W _{MxTO}	-	0.118	0.092	0.312	0.459	0.446
	W _{Payload} /W _{MxTO}	-	0.520	0.242	0.260	0.206	0.146
Dimensions	Length	m	5.48	8.56	37.57	58.82	72.72
	Span	m	6.63	13.42	34.1	60.3	79.75
	Wing Area	m²	5.2	16.29	122.6	361.6	845
	Tails Area	m²	1.602	4.668	52.5		
	Aspect Ratio	-	8.5	11.1	9.5	10.1	7.5
Dimension Ratio	Length / Span	-	0.827	0.638	1.102	0.975	0.912
	Tails Ratio	-	0.308	0.287	0.428		
Power Plant	Engine number	-	1	2	2	2	4
	Power (total)	kW	69	198	-	-	-
	Thrust	daN	-	-	22 237	60 000	142 700
	SFC (propeller)	kg/kW.h	0.238	0.212	-	-	-
	SFC (jet) _{Cruise}	kg/N.h	-	-	0.061	0.057	0.059
	Fuel Flow	kg/h	-	-	3023	7622	18763
	Propeller efficiency	-	0.82	0.85	-	-	-
Aerodynamics	CI cruise	-	0.25	0.34	0.63	0.61	0.58
	CI _{Mx}		2.36	2.00			
	е	-	0.71	0.78	0.85	0.85	0.85
	Glide Ratio	-	9	10.5			
	Wing loading Mx	kg/m²	94.2	104.4	619.1	658.2	673.4
Performance	Cruise speed	km/h	318	283	828	870	902
	Cruise speed	Mach	-	-	0.78	0.82	0.85
	Stall speed	km/h	91	104			
	Takeoff speed	km/h	105	120			
	Takeoff run	m	155	382	2 090	2 220	2 750
	Rate of Climb _{Mx}	m/s	8.89	5.46	12.2		
	Maxi Range	km			7 000	17 000	18 000
	Power-to-Weight Ratio	kW/kg	0.141	0.116			
	Weigh-to-Power Ratio	kg/kW	7.101	8.586			
	Thrust-to-Weight Ratio	daN/kg	-	-	0.293	0.252	0.251
	Weight-to-Thrust Ratio	kg/daN	-	-	3.413	3.967	3.987

Annex 2. Common values

			MCR01	Diamond DA42	A320-200	A330-200	A380-800
Cost	Unit Price (2012)	M\$	0.11	0.54	88	208	390
	M\$ / Seat	M\$	0.055	0.135	0.489	0.547	0.457
	\$ / kg Empty	\$/kg	478	426	2131	1739	1442
	\$ / kg Payload	\$/kg	431	1311	4467	4245	4699
	\$ / kg Maximum	\$/kg	224	318	1159	874	685

Annex 3. Forces and moments

An aircraft is nothing else than a car: a means to transport passengers or goods from one point to the other. With the only difference, that we would like not to travel on the ground but in the air.

Due to the gravity, this mass (the aircraft) generates a force acting downwards: the weight (W) of the aircraft.

To move the aircraft, we need to generate a force that will pull the aircraft forward. This force (T_g) is generated by the engine (piston engine, turboprop, turbojet, rocket, ...).

Unfortunately because of the physical properties of the air, every moving generates a drag (D), a force acting in the opposite direction of the motion.

To lift the aircraft in the air, we need to add something to generate a vertical force (L_w) acting upwards: the wing. The wing generates the lift but also a nose-down pitching moment.

To counteract this nose-down pitching moment, we need to generate forces (L_{cr} , L_{HT}) acting upwards and/or downwards depending on their location about de CG position.

An aircraft, in level flight in the air, is nothing else than forces in equilibrium around the CG. The designer will size the aircraft in order that this equilibrium remains for a given CG range.

Annex 4. The standard atmosphere

4.1 Introduction

Since the real atmosphere never remains constant at any particular time or place, a hypothetical model must be used as an approximation to what may be expected. This model is known as <u>the standard</u> <u>atmosphere</u>.

4.2 Assumptions

Some assumptions are made in order to build the standard atmosphere:

- 1. The air in the model is assumed to be without dust, moisture and water vapour.
- 2. The air is supposed to be at rest with respect to the earth, this means that there is no wind, no turbulence.
- 3. The reference altitude is the mean sea level (MSL). At the MSL the conditions are:

Pressure	p ₀	101 325	N/m²
Density	ρο	1.225	kg/m³
Temperature	T ₀	288.15	°K
		15	°C
Speed of sound	a o	340.294	m/s
Acceleration of gravity	g 0	9.80665	m/s²

- 4. The air is considered to be a perfect gas $p = \rho \cdot R \cdot T$ with R is the real gas constant for the air (287 J/kg.K)
- 5. The temperature decreases with altitude at a constant rate of -6.5°C/1000m up to the tropopause
- 6. The standard tropopause altitude is 11 000m
- 7. The temperature remains constant at a value of -56.5°C from the tropopause up to 20 000 m

4.3 Standard temperature

The temperature decreases with altitude at a constant rate of -6.5°C/1000m up to the tropopause

$$T = T_0 - 6.5 \cdot \frac{h(m)}{1000}$$

4.4 Standard pressure

To compute the standard pressure (p) at a given altitude, the temperature is assumed standard and the air is assumed to be a perfect gas.

$$p = p_0 \cdot \left(1 - 0.0065 \cdot \frac{h}{T_0}\right)^{5.2561}$$

with the unit of T_0 is °K and h is meters

4.5 Standard density

To compute the standard density (ρ), since the pressure and temperature are known for a given altitude, the perfect gas equation is used

$$\rho = \frac{p}{R \cdot T}$$

4.6 Speed of sound

The speed of sound is proportional to the square root of the absolute temperature (K) but is independent of pressure or density for a given ideal gas. The sound travels faster in fluid than it does in air (4.3 times faster in water, 15 times faster in iron than in air at 20°C)

 $a = \sqrt{\gamma \cdot R \cdot T}$, with γ , the isentropic coefficient (1.4 for the air).

4.7 Notes

The altitude obtained from the measurement of pressure is called the pressure altitude.

The altitude obtained from the <u>measurement of density</u> is called the **density altitude**. In other words, the density altitude is the altitude in the ISA model at which the air density would be equal to the actual air density at the place of observation.

The ISA model is used as a reference. If the real atmospheric conditions are different, they will be expressed as ISA +/- Δ ISA (ISA+10°C)

4.8 The standard atmosphere up to 100.000 m

ALTITUDE	TEMP.	PRESSURE			PRESSURE	DENSITY	Speed of	ALTITUDE
(Feet)	(°C)	hPa	PSI	In.Hg	RATIO δ = P/Po	σ = ρ/ρο	sound (kt)	(meters)
40 000	- 56.5	188	2.72	5.54	0.1851	0.2462	573	12 192
39 000	- 56.5	197	2.58	5.81	0.1942	0.2583	573	11 887
38 000	- 56.5	206	2.99	6.10	0.2038	0.2710	573	11 582
37 000	- 56.5	217	3.14	6.40	0.2138	0.2844	573	11 278
36 000	- 56.3	227	3.30	6.71	0.2243	0.2981	573	10 973
35 000	- 54.3	238	3.46	7.04	0.2353	0.3099	576	10 668
34 000	- 52.4	250	3.63	7.38	0.2467	0.3220	579	10 363
33 000	- 50.4	262	3.80	7.74	0.2586	0.3345	581	10 058
32 000	- 48.4	274	3.98	8.11	0.2709	0.3473	584	9 754
31 000	- 46.4	287	4.17	8.49	0.2837	0.3605	586	9 4 4 9
30 000	- 44.4	301	4.36	8.89	0.2970	0.3741	589	9 1 4 4
29 000	- 42.5	315	4.57	9.30	0.3107	0.3881	591	8 839
28 000	- 40.5	329	4.78	9.73	0.3250	0.4025	507	8 534
26 000	- 30.0	360	4.99	10.17	0.3590	0.4175	500	7 0 2 5 0
25 000	- 34.5	376	5.45	11.00	0.3332	0.4323	602	7 620
24 000	- 32.5	303	5.40	11.10	0.3876	0.44401	604	7 315
23 000	- 30.6	410	5.95	12 11	0.4046	0.4806	607	7 010
22 000	- 28.6	428	6.21	12.64	0.4223	0.4976	609	6 706
21 000	- 26.6	446	6.47	13.18	0.4406	0.5150	611	6 401
20 000	- 24.6	466	6.75	13.75	0.4595	0.5328	614	6 096
19 000	- 22.6	485	7.04	14.34	0.4791	0.5511	616	5 791
18 000	- 20.7	506	7.34	14.94	0.4994	0.5699	619	5 406
17 000	- 18.7	527	7.65	15.57	0.5203	0.5892	621	5 182
16 000	- 16.7	549	7.97	16.22	0.5420	0.6090	624	4 877
15 000	- 14.7	572	8.29	16.89	0.5643	0.6292	626	4 572
14 000	- 12.7	595	8.63	17.58	0.5875	0.6500	628	4 267
13 000	- 10.8	619	8.99	18.29	0.6113	0.6713	631	3 962
12 000	- 8.8	644	9.35	19.03	0.6360	0.6932	633	3 658
11 000	- 6.8	670	9.72	19.79	0.6614	0.7156	636	3 353
10 000	- 4.8	697	10.10	20.58	0.6877	0.7385	638	3 048
9 000	- 2.8	724	10.51	21.39	0.7148	0.7620	640	2 743
8 000	- 0.8	753	10.92	22.22	0.7428	0.7860	643	2 438
6 000	+ 1.1	782	11.34	23.09	0.7716	0.8100	640	2 134
5 000	+ 5.1	012	10.00	23.90	0.0014	0.0359	650	1 524
4 000	+ 0.1	875	12.23	24.90	0.0320	0.0017	652	1 210
3 000	+ 9.1	908	13.17	26.82	0.8057	0.0001	654	Q14
2 000	+ 11 0	942	13.67	27.82	0.9298	0.9428	656	610
1 000	+ 13.0	977	14.17	28.86	0.9644	0.9711	659	305
0	+ 15.0	1013	14.70	29.92	1.0000	1.0000	661	0
- 1 000	+ 17.0	1050	15.23	31.02	1.0366	1.0295	664	- 305

4.9 Table of the standard atmosphere

Annex 5. Airspeed

5.1 Introduction

Airspeed is the speed of the aircraft relative to the air. The measurement is made by a pitot-static system. The indication is made on board by an airspeed indicator.

5.2 Pitot-static system

The airspeed is measured by a pressure-sensitive instrument called the pitot-static system

Image 1 : Pitot-static system

Using the Bernoulli's law, which states that the total pressure is the sum of the static pressure and the dynamic pressure.

$$p_t = p_s + \left(\frac{\rho \cdot V^2}{2}\right)$$

Solving that for velocity we get:

$$V = \sqrt{\frac{2 \cdot (p_t - p_s)}{\rho}}$$

5.3 Airspeed indicator

Image 2 : Airspeed indicator

5.4 Altimeter and Vertical airspeed indicator

5.5 Pitot-static system on the Airbus A330-200

Location of the pitot probe and static port on the airbus A330-200

Image 5 : Pitot-static system on the Airbus A330-200

Three pitot probes are located in the front of the fuselage. From right to left:

- Pitot Captain
- Pitot Standby
- Pitot First Officer

5.6 Airspeed relationships

5.6.1 IAS – Indicated airspeed

Indicated airspeed is that shown on the airspeed indicator.

5.6.2 CAS – Calibrated airspeed

Calibrated airspeed is the indicated airspeed (IAS) corrected for position and instrument error.

5.6.3 EAS – Equivalent airspeed

Equivalent airspeed is calibrated airspeed (CAS) corrected for compressibility effect.

$$EAS = CAS \cdot \sqrt{\frac{p}{p_0}} \cdot \left[\frac{(q_c/p + 1)^{0.286} - 1}{(q_c/p_0 + 1)^{0.286} - 1}\right]^{0.5}$$

With

р	Pressure at the given altitude
p ₀	Pressure at sea level
qc	$p \cdot ([1 + 0.2 \cdot M^2]^{3.5} - 1)$
М	TAS/a
а	Speed of sound

5.6.4 TAS – True airspeed

True airspeed is the equivalent airspeed (EAS) corrected for change in atmospheric density.

$$TAS = EAS \cdot \sqrt{\frac{\rho_0}{\rho}}$$

With

ρ	Density at the given altitude
ρο	Density at sea level

5.6.5 GS – Ground speed

Ground speed is the speed relative to the ground.

5.7 Example

<u>Given</u>

Μ	0.411
Flight altitude	4000 m
ρ	0.819 kg/m³
р	61 660 N/m ²
а	324.6 m/s
ρο	1.225 kg/m³
p ₀	101.330 N/m²
q _c	7 995 N/m²

Computed

IAS	CAS	EAS	TAS
110 m/s	110 m/s	109 m/s	133 m/s

Annex 7. Optimisation process

7.1 Cruising speed (propeller driven aircraft)

The relationship between wing loading and power loading for a propeller driven aircraft at cruise is given by

$$\frac{\mathbf{W}}{\mathbf{P}_{\text{eng}}} = \mathbf{R}_{\text{P}} \cdot \frac{\mathbf{c}_2 \cdot \mathbf{W} / \mathbf{S}_{\text{w}}}{\mathbf{c}_3 + \mathbf{c}_1 \cdot \left(\mathbf{W} / \mathbf{S}_{\text{w}}\right)^2}$$

with

$$R_{P} = \frac{\left(\frac{\rho}{1.225}\right) - 0.15}{0.85}$$

$$c_{1} = \frac{1}{V} \cdot \frac{1}{\pi \cdot AR_{w} \cdot e} \cdot \frac{4 \cdot g^{2}}{\rho^{2}}$$

$$c_{2} = \frac{2 \cdot \eta_{p}}{\rho}$$

$$c_{3} = V^{3} \cdot C_{D_{0}}$$

Development of the relationship between wing loading and power loading at cruise

$$\begin{split} \mathbf{P}_{\text{avai}} \cdot \mathbf{\eta}_{\text{p}} &= 0.5 \cdot \rho \cdot \mathbf{V}^{3} \cdot \mathbf{C}_{\text{D}} \cdot \mathbf{S}_{\text{w}} \\ \mathbf{V}^{3} &= \frac{2 \cdot \mathbf{P}_{\text{avai}} \cdot \mathbf{\eta}_{\text{p}}}{\rho \cdot \mathbf{C}_{\text{D}} \cdot \mathbf{S}_{\text{w}}} \\ \mathbf{V}^{3} &= \frac{2 \cdot \mathbf{\eta}_{\text{p}}}{\rho \cdot \mathbf{C}_{\text{D}}} \cdot \frac{\mathbf{W}/\mathbf{S}_{\text{w}}}{\mathbf{W}/\mathbf{P}_{\text{avai}}} \text{ and } \mathbf{C}_{\text{D}} &= \mathbf{C}_{\text{D}_{0}} + \frac{\mathbf{C}_{\text{L}}^{2}}{\pi \cdot \mathbf{AR}_{\text{w}} \cdot \mathbf{e}} \text{ and } \mathbf{C}_{\text{L}} &= \frac{2 \cdot \mathbf{g}}{\rho \cdot \mathbf{V}^{2}} \cdot \frac{\mathbf{W}}{\mathbf{S}_{\text{w}}} \\ \mathbf{V}^{3} &= \frac{2 \cdot \mathbf{\eta}_{\text{p}}}{\rho} \cdot \frac{\mathbf{W}/\mathbf{S}_{\text{w}}}{\mathbf{W}/\mathbf{P}_{\text{avai}}} \cdot \frac{1}{\mathbf{C}_{\text{D}_{0}} + \frac{1}{\pi \cdot \mathbf{AR}_{\text{w}} \cdot \mathbf{e}} \cdot \left(\frac{2 \cdot \mathbf{g}}{\rho \cdot \mathbf{V}^{2}}\right)^{2} \cdot \left(\frac{\mathbf{W}}{\mathbf{S}_{\text{w}}}\right)^{2}} \\ \mathbf{V}^{3} \cdot \mathbf{C}_{\text{D}_{0}} + \frac{\mathbf{V}^{3}}{\pi \cdot \mathbf{AR}_{\text{w}} \cdot \mathbf{e}} \cdot \frac{4 \cdot \mathbf{g}^{2}}{\rho^{2} \cdot \mathbf{V}^{4}} \cdot \left(\frac{\mathbf{W}}{\mathbf{S}_{\text{w}}}\right)^{2} = \frac{2 \cdot \mathbf{\eta}_{\text{p}}}{\rho} \cdot \frac{\mathbf{W}/\mathbf{S}_{\text{w}}}{\mathbf{W}/\mathbf{P}_{\text{avai}}} \\ \frac{1}{\mathbf{V}} \cdot \frac{1}{\pi \cdot \mathbf{AR}_{\text{w}} \cdot \mathbf{e}} \cdot \frac{4 \cdot \mathbf{g}^{2}}{\rho^{2}} \cdot \left(\frac{\mathbf{W}}{\mathbf{S}_{\text{w}}}\right)^{2} - \frac{2 \cdot \mathbf{\eta}_{\text{p}}}{\rho} \cdot \frac{\mathbf{W}/\mathbf{S}_{\text{w}}}{\mathbf{W}/\mathbf{P}_{\text{avai}}} + \mathbf{V}^{3} \cdot \mathbf{C}_{\text{D}_{0}} = 0 \end{split}$$

$$c_{1} \cdot \left(\frac{W}{S_{w}}\right)^{2} - c_{2} \cdot \frac{W/S_{w}}{W/P_{avai}} + c_{3} = 0$$

$$c_{2} \cdot \frac{W/S_{w}}{W/P_{avai}} - c_{1} \cdot \left(\frac{W}{S_{w}}\right)^{2} = c_{3}$$

$$\frac{W}{P_{avai}} = \frac{c_{2} \cdot W/S_{w}}{c_{3} + c_{1} \cdot (W/S_{w})^{2}}$$

$$\frac{W}{P_{eng}} = R_{P} \cdot \frac{W}{BHP_{avai}}$$

$$\frac{W}{P_{eng}} = R_{P} \cdot \frac{c_{2} \cdot W/S_{w}}{c_{3} + c_{1} \cdot (W/S_{w})^{2}}$$

7.2 Stall speed

The relationship between wing loading and power loading at stall is given by

$$\frac{W}{S_w} = \frac{\rho}{2 \cdot g} \cdot V_s^2 \cdot C_{L_2}$$

Development of the relationship between wing loading and power loading at stall

$$L = W \cdot g$$

$$W \cdot g = 0.5 \cdot \rho \cdot V_s^2 \cdot S_w \cdot Cl_2$$

$$\frac{W}{S_w} = \frac{\rho}{2 \cdot g} \cdot V_s^2 \cdot C_{L_2}$$

The stall performance is independent of the power loading and is only function of the wing loading.

7.3 Landing field length

The relationship between wing loading and power loading at landing is given by

$$\frac{W}{S_{w}} = \frac{\rho}{2 \cdot g} \cdot V_{approach}^{2} \cdot C_{L}$$

Development of the relationship between wing loading and power loading at landing

$$\begin{array}{ll} L = W \cdot g \\ W \cdot g = 0.5 \cdot \rho \cdot {V_{approach}}^2 \cdot S_w \cdot Cl \text{ and } V_{approach} = 1.3 \cdot V_s \\ \\ \displaystyle \frac{W}{S_w} = \frac{\rho}{2 \cdot g} \cdot {V_{approach}}^2 \cdot C_L \end{array}$$

The landing performance is independent of the power loading and is only function of the wing loading

7.4 Takeoff field length (propeller driven aircraft)

The relationship between wing loading and power loading for a propeller driven aircraft at takeoff is given by

$$\frac{\mathbf{W}}{\mathbf{P}_{eng}} = \mathbf{R}_{P} \cdot \frac{\mathbf{C}_{1} \cdot \mathbf{C}_{5} \cdot \left(\frac{1}{\mathbf{W}/\mathbf{S}_{w}}\right)^{0.5}}{\left(\mathbf{W}/\mathbf{S}_{w}\right) + \mathbf{C}_{5} \cdot \mathbf{C}_{6}}$$

With

$$R_{p} = \frac{\left(\frac{\rho}{1.225}\right) - 0.15}{0.85}$$

$$C_{1} = \eta_{p} \cdot \left(\frac{\rho \cdot C_{L}}{2 \cdot g}\right)^{0.5}$$

$$C_{2} = \frac{\rho \cdot C_{D_{0}}}{2} \cdot \left(\frac{2 \cdot g}{\rho \cdot C_{L}}\right)$$

$$C_{3} = g \cdot c_{f_{gr}}$$

$$C_{4} = g \cdot \sin \gamma$$

$$C_{5} = \frac{d \cdot \rho \cdot C_{L}}{g}$$

$$C_6 = C_2 + C_3 + C_4$$

Development of the relationship between wing loading and power loading at takeoff

$$\begin{split} d &= \frac{a \cdot t^2}{2} = \frac{V^2}{2 \cdot a} \\ a &= \frac{F}{W} = \frac{T_g - D_0 - F_{Friction} - F_{slope}}{W} \\ \text{with} \\ Tg &= \frac{P_{avail} \cdot \eta_p}{V} \quad \text{and} \quad D_0 = \frac{\rho}{2} \cdot V^2 \cdot C_{D_0} \cdot S_w \text{ and } F_{friction} = W \cdot g \cdot c_{f_{gr}} \text{ and } F_{slope} = W \cdot g \cdot sin \gamma \\ a &= \frac{1}{W/P_{avail}} \cdot \frac{\eta_p}{V} - \frac{\rho}{2} \cdot V^2 \cdot C_{D_0} \cdot \frac{1}{W/S_w} - g \cdot c_{f_{gr}} - g \cdot sin \gamma \\ \text{with} \\ V^2 &= \frac{2 \cdot g}{\rho \cdot C_L} \cdot \frac{W}{S_w} \\ a &= \frac{\eta_p}{W/P_{avail}} \cdot \left(\frac{\rho \cdot Cl}{2 \cdot g}\right)^{0.5} \cdot \left(\frac{1}{W/S_w}\right)^{0.5} - \frac{\rho \cdot C_{D_0}}{2} \cdot \left(\frac{2 \cdot g}{\rho \cdot C_L} \cdot W/S_w\right) \cdot \frac{1}{W/S_w} - g \cdot c_{f_{gr}} - g \cdot sin \gamma \end{split}$$

www.oad.aero

$$\begin{vmatrix} C_1 = \eta_p \cdot \left(\frac{\rho \cdot C_L}{2 \cdot g}\right)^{0.5} & C_2 = \frac{\rho \cdot C_{D_0}}{2} \cdot \left(\frac{2 \cdot g}{\rho \cdot C_L}\right) & C_3 = g \cdot c_{f_g} & C_4 = g \cdot \sin \gamma \\ a = C_1 \cdot \frac{1}{W/P_{avail}} \cdot \left(\frac{1}{W/S_w}\right)^{0.5} - C_2 - C_3 - C_4 \\ d = \frac{g}{\rho \cdot C_L} \cdot (W/S_w) \cdot \frac{1}{C_1 \cdot \left(\frac{1}{W/P_{avail}}\right) \cdot \left(\frac{1}{W/S_w}\right)^{0.5} - C_2 - C_3 - C_4 \\ C_6 = C_2 + C_3 + C_4 \\ C_5 = \frac{d \cdot \rho \cdot C_L}{g} \\ C_5 = \left(W/S_w\right) \cdot \frac{1}{C_1 \cdot \left(\frac{1}{W/P_{avail}}\right) \cdot \left(\frac{1}{W/S_w}\right)^{0.5} - C_6 \\ C_5 \cdot C_1 \cdot \left(\frac{1}{W/P_{avail}}\right) \cdot \left(\frac{1}{W/S_w}\right)^{0.5} - C_5 \cdot C_6 = (W/S_w) \\ C_5 \cdot C_1 \cdot \left(\frac{1}{W/P_{avail}}\right) \cdot \left(\frac{1}{W/S_w}\right)^{0.5} = (W/S_w) + C_5 \cdot C_6 \\ \frac{W}{P_{avail}} = \frac{C_1 \cdot C_5 \cdot \left(\frac{1}{W/S_w}\right)^{0.5}}{(W/S_w) + C_5 \cdot C_6} \\ \frac{W}{P_{eng}} = R_p \cdot \frac{C_1 \cdot C_5 \cdot \left(\frac{1}{W/S_w}\right)^{0.5}}{(W/S_w) + C_5 \cdot C_6} \\ \end{vmatrix}$$

7.5 Climb performances (propeller driven aircraft)

The relationship between wing loading and power loading for a propeller driven aircraft in climb is given by

$$\frac{\mathbf{W}}{\mathbf{P}_{eng}} = \mathbf{R}_{p} \cdot \frac{\eta_{p}}{0.5 \cdot (2 \cdot g)^{3/2} \cdot (\rho)^{-l/2} \cdot \left(\frac{\mathbf{W}}{\mathbf{S}_{w}}\right)^{l/2} \left(\frac{\mathbf{C}_{D}}{\mathbf{C}_{L}^{3/2}}\right) + g \cdot \mathbf{R}\mathbf{C}}$$

Development of the relationship between wing loading and power loading in climb

$$\begin{split} P_{avail} \cdot \eta_{p} &= P_{req} + W \cdot g \cdot RC \\ P_{req} &= 0.5 \cdot \rho \cdot V^{3} \cdot S_{w} \cdot C_{D} \\ P_{req} &= 0.5 \cdot \rho \cdot \left(\frac{2 \cdot g}{\rho \cdot C_{L}} \cdot \frac{W}{S_{w}}\right)^{3/2} \cdot S_{w} \cdot C_{D} \\ P_{req} &= 0.5 \cdot \rho \cdot S_{w} \cdot \frac{C_{D}}{C_{L}^{3/2}} \cdot \left(\frac{2 \cdot g}{\rho} \cdot \frac{W}{S_{w}}\right)^{3/2} \\ P_{avail} \cdot \eta_{p} &= 0.5 \cdot \rho \cdot S_{w} \cdot \frac{C_{D}}{C_{L}^{3/2}} \cdot \left(\frac{2 \cdot g}{\rho} \cdot \frac{W}{S_{w}}\right)^{3/2} + W \cdot g \cdot RC \\ \frac{P_{avail}}{W} &= \frac{1}{\eta_{p}} \cdot 0.5 \cdot (2 \cdot g)^{3/2} \cdot \left(\frac{1}{\rho}\right)^{1/2} \cdot \left(\frac{W}{S}\right)^{1/2} \cdot \frac{C_{D}}{C_{L}^{3/2}} + g \cdot RC \\ \frac{W}{P_{eng}} &= R_{p} \cdot \frac{\eta_{p}}{0.5 \cdot (2 \cdot g)^{3/2} \cdot (\rho)^{-1/2} \cdot \left(\frac{W}{S_{w}}\right)^{1/2} \left(\frac{C_{D}}{C_{L}^{3/2}}\right) + g \cdot RC \end{split}$$

Annex 8. Optimisation process (example)

8.1 Requirements (input data)

General

Aspect ratio	8.5
Oswald factor (e)	0.80
g	9.81 m/s²
Propeller efficiency (η_P)	0.84
Engine specific fuel consumption (csf)	0.274 kg/kW.h
Payload (W _{payload})	200 kg
Useful weight ratio (W _{useful} /W _{MxTO})	0.475

[1] Cruise

Flight speed (V _{cr})	300 km/h
Zero lift drag coefficient (C _{D0})	0.0207
Air density (ρ₀)	0.996 kg/m ³
Power ratio (R _P)	0.78
Range	800 km

[2] Stall speed - [3] Landing

Vs	80 km/h
Сьмх	2.80

[4] Takeoff

Takeoff run (d)	150 m
Lift coefficient (CLTO)	1.52
Rolling friction coefficient (C _{fgr})	0.02
Runway angle (γ)	0°
Air density (ρ₀)	1.225 kg/m³
Power ratio (R _P)	1

[5] Climb

Rate of climb (RC)	8.05 m/s
Propeller efficiency (η _P)	0.78
Zero lift drag coefficient (C _{D0})	0.0219
Air density (ρ₀)	1.225 kg/m³
Power ratio (R _P)	1

8.2 Equations

[1] Cruise	$\frac{\mathbf{W}}{\mathbf{P}_{eng}} = \mathbf{R}_{P} \cdot \frac{\mathbf{c}_{2} \cdot \mathbf{W} / \mathbf{S}_{w}}{\mathbf{c}_{3} + \mathbf{c}_{1} \cdot \left(\mathbf{W} / \mathbf{S}_{w}\right)^{2}}$
[2] Stall	$\frac{W}{S_{w}} = \frac{\rho}{2 \cdot g} \cdot V_{s}^{2} \cdot C_{L_{2}}$
[3] Takeoff	$\frac{\mathbf{W}}{\mathbf{P}_{eng}} = \mathbf{R}_{P} \cdot \frac{\mathbf{C}_{1} \cdot \mathbf{C}_{5} \cdot \left(\frac{1}{\mathbf{W}/\mathbf{S}_{w}}\right)^{0.5}}{\left(\mathbf{W}/\mathbf{S}_{w}\right) + \mathbf{C}_{5} \cdot \mathbf{C}_{6}}$
[4] Climb	$\frac{\mathbf{W}}{\mathbf{P}_{eng}} = \mathbf{R}_{p} \cdot \frac{\eta_{p}}{0.5 \cdot (2 \cdot g)^{3/2} \cdot (\rho)^{-1/2} \cdot \left(\frac{\mathbf{W}}{\mathbf{S}_{w}}\right)^{1/2} \left(\frac{\mathbf{C}_{D}}{\mathbf{C}_{L}^{3/2}}\right) + g \cdot \mathbf{R}\mathbf{C}}$

8.3 Table

	[1]	[2]	[3]	[4]
W/S	W/BHP	W/BHP	W/BHP	W/BHP
40	4.3		23.6	7.6
50	5.3		17.5	7.4
60	6.2		13.7	7.3
70	7.1		11.1	7.1
80	7.9		9.2	7.0
90	8.6		7.8	6.9
100	9.3		6.7	6.8
110	9.9		5.9	6.6
120	10.4		5.2	6.6
130	10.9		4.6	6.5
140	11.3		4.2	6.4

From the selected wing loading (W/S) and power loading (W/P), the following values may be computed:

8.4 Chart

The selection of a given match point defined by a given value of wing loading and the corresponding value of power loading will allow the designer to compute the wing area and maximum engine power of the aircraft that fulfills the requirements.

→W/S	86 kg/m²
→W/BHP	7.6 kg/kW
Cruise	
CL	0.24
C _{D0}	0.02070
Cdl	0.00279
GR	10.39
В	11685796
W _{fuel} /W	0.07
W	489 kg
W _{fuel}	32 kg
Wempty	257 kg
Sw	5.69 m²
BHP _{eng}	64.4 kW

Annex 9. Airworthiness requirements

9.1 Introduction

Airworthiness is a term used to describe whether an aircraft has been certified as suitable for safe flight.

The **Federal Aviation Regulations**, or **FARs**, are rules prescribed by the Federal Aviation Administration (FAA) governing all aviation activities in the United States. The FARs are part of Title 14 of the Code of Federal Regulations (CFR). A wide variety of activities are regulated, such as airplane design, typical airline flights, pilot training activities, hot-air ballooning, lighter-than-air aircraft, man-made structure heights, obstruction lighting and marking, and even model rocket launches and model aircraft operation. The rules are designed to promote safe aviation, protecting pilots, passengers and the general public from unnecessary risk.

The FARs are organized into sections, called *parts* due to their organization within the CFR. Each part deals with a specific type of activity. For example, *14 CFR Part 141* contains rules for pilot training schools.

- Part 1 Definitions and Abbreviations
- Part 13 Investigation and Enforcement Procedures
- Part 21 Certification Procedures for Products and Parts
- Part 23 Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Airplanes
- Part 25 Airworthiness Standards: Transport Category Airplanes
- Part 27 Airworthiness Standards: Normal Category Rotorcraft
- Part 29 Airworthiness Standards: Transport Category Rotorcraft
- Part 33 Airworthiness Standards: Aircraft Engines
- Part 34 Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes
- Part 35 Airworthiness Standards: Propellers
- Part 39 Airworthiness Directives
- Part 43 Maintenance, Preventive Maintenance, Rebuilding, and Alteration
- Part 45 Identification and Registration Marking
- Part 47 Aircraft Registration
- Part 61 Certification: Pilots, Flight Instructors, and Ground Instructors
- Part 65 Certification: Airmen Other Than Flight Crewmembers
- Part 67 Medical Standards and Certification
- Part 71 Designation of Class A, Class B, Class C, Class D, and Class E Airspace Areas; Airways; Routes; and Reporting Points
- Part 73 Special Use Airspace
- Part 91 General Operating and Flight Rules
- Part 97 Standard Instrument Approach Procedures
- Part 101 Moored Balloons, Kites, Unmanned Rockets and Unmanned Free Balloons
- Part 103 Ultralight Vehicles
- Part 105 Parachute Operations
- Part 119 Certification: Air Carriers and Commercial Operators
- Part 121 Operating Requirements: Domestic, Flag, and Supplemental Operations
- Part 125 Certification and Operations: Airplanes Having a Seating Capacity of 20 or More Passengers or a Payload Capacity of 6,000 Pounds or More
- Part 133 Rotorcraft External-Load Operations
- Part 135 Operating Requirements: Commuter and On Demand Operations and Rules Governing Persons on Board Such Aircraft
- Part 136 Commercial Air Tours and National Parks Air Tour Management
- Part 137 Agricultural Aircraft Operations
- Part 139 Certification of Airports
- Part 141 Flight Schools
- Part 142 Training Centres
- Part 145 Repair Stations

- Part 147 Aviation Maintenance Technicians Schools
- Part 183 Representatives of The Administrator

Part 23 contains airworthiness standards for airplanes in the normal, utility, aerobatic, and commuter categories. It dictates the standards required for issuance and change of type certificates for airplanes in these categories.

This Part has a large number of regulations to ensure airworthiness in areas such as structural loads, airframe, performance, stability, controllability, and safety mechanisms, how the seats must be constructed, oxygen and air pressurization systems, fire prevention, escape hatches, flight management procedures, flight control communications, emergency landing procedures, and other limitations, as well as testing of all the systems of the aircraft. It also determines special aspects of aircraft performance such as stall speed (for single engine airplanes - not more than 61 knots), rate of climb (not less than 300 ft/min), take off speed (not less than 1.2 x Vs1), weight of each pilot and passenger (170 lb for airplanes in the normal and commuter categories, and 190 lb for airplanes in the acrobatic and utility categories). The Cessna 177, Cirrus SR20 and Piper PA-34 Seneca are well-known airplanes types that were certificated to FAR Part 23.

Most of the Federal Aviation Regulations, including Part 23, commenced on February 1, 1965. Prior to that date, airworthiness standards for airplanes in the normal, utility and acrobatic categories were promulgated in Part 3 of the US Civil Air Regulations. Many well-known types of light airplane are type certificated to CAR Part 3, even though they remained in production after 1965. For example, the Cessna 150 and Piper Cherokee are type certificated to CAR Part 3.

Part 25 contains airworthiness standards for airplanes in the transport category. Transport category airplanes are either:

- Jets with 10 or more seats or a maximum takeoff weight (MTOW) greater than 12,500 pounds (5,670 kg); or
- Propeller-driven airplanes with greater than 19 seats or a MTOW greater than 19,000 pounds (8,618 kg).

The Boeing 737 and later types, and Airbus A300 series, are well-known airplane types that were certificated to FAR Part 25.

Most of the Federal Aviation Regulations, including Part 25, commenced on February 1, 1965. Prior to that date, airworthiness standards for airplanes in the transport category were promulgated in Part 4b of the US Civil Air Regulations. The Boeing 707 and 727 are two well-known airplane types that were certificated to CAR Part 4b.

9.2 Miscellaneous

	FAR 23 CS 23			FAR 25	
	N ^a	Ua	A ^a	Ca	03 23
	≤ 12500 lb	≤ 12500 lb	≤ 12500 lb	\leq 19000 lb	
Maximum takeoff weight ^b	≥ 170.s + ∆ ₁	≥ 190.s +∆ ₁	\geq 190.s + Δ_1	\geq 170.s + Δ_1	Not restricted
	\geq MC + Δ_2	\geq MC + Δ_2	\geq MC + Δ_2	\geq MC + Δ_2	
Minimum weight ^b	EW + MC + WFC			Not restricted	
Number of engines	≥ 1	≥ 1	≥ 1		≥2
Maximum number of Occupants ^a	\leq 9+pilot(s)	\leq 9+pilot(s)	\leq 9+pilot(s)	≤ 19+pilot(s)	Not restricted
Type of engine	All	All	All	Propeller- driven	All _(FAR 25) TP _(CS 25) ^c
Maximum operating altitude, ft	35000 ft	35000 ft	35000 ft	35000 ft	Not restricted

 a Cf. FAR 23.3 : Airplane categories for the definition of each category - CS 23.1 : Applicability b Cf. FAR 23.25 - CS 23.25 : Weight limits

^c Turbine-powered, including Turbopropeller

N : Normal

U : Utility

A : Acrobatic

C : Commuter

s : Number of seats

 Δ_1 : Oil at full capacity + Weight of fuel for 30' of operation at maximum continuous power (if VFR_{day})

 Δ_1 : Oil at full capacity + Weight of fuel for 45' of operation at maximum continuous power (if VFR_{night} or IFR)

 Δ_2 : Oil at full capacity + Fuel at full capacity

EW : Empty weight

MC : required minimum crew (assume 170 lb for each crew member)

WFC : minimum fuel weight

Turbojet planes	powered	air-	WFC : weight of 5% of the total fuel capacity
Other airp	lanes		WFC : weight of the fuel necessary for 30' of operation at maximum continuous power

9.3 Structure – Manoeuvring load factors

	N1 ^a	n ₂ a	ng ^b	n _{flap} c
FAR 23 - CS 23 - Normal	≤ 3.8	-0.4 . n ₁	V o U V o	
FAR 23 - CS 23 - Utility	4.4	-0.4 . n ₁	$1 \pm \frac{K_g. \rho_0. \theta_{de}. V. u}{2. \frac{W}{S}}$	2
FAR 23 - CS 23 - Acrobatic	6	-0.5 . n ₁		
FAR 25 - CS 25	$\begin{array}{l} 2.5 \leq n_1 \leq 3.8 \\ 2.1 \text{+} (10884 \text{/} (W \text{+} 4535)) \end{array}$	$\label{eq:VC} \begin{array}{l} \textbf{-1} \rightarrow Vc \\ \textbf{-1} \leq n_2 \leq 0^d \end{array}$	$1 \pm \frac{K_g.\rho_0.U_{ref}.V.a}{2.\frac{W}{S}}$	2

^a Cf. FAR 23.337 - CS23.337 - FAR 25.337 - CS 25.337 : Limit manoeuvring load factors

^b Cf. FAR 23.341 - CS23.341 - FAR 25.341 - CS 25.341 : Gust load factors

° Cf. FAR 23.345 - CS23.345 - FAR 25.345 - CS 25.345 : High lift devices

 $^{\rm d}$ Varies linearly from the value at V_C to zero at V_D

n1: positive maneuvering load factor

n2: negative maneuvering load factor

ng: gust load factor

W : design maximum takeoff weight (kg)

Kg: gust alleviation factor

μg: airplane mass ratio

S : aerodynamic reference wing area (m²)

 ρ_0 : air density at sea level (kg/m³)

 ρ : air density at the altitude considered (kg/m³)

c : mean geometric chord (m)

g : acceleration due to gravity (m/s²)

V : aircraft equivalent speed (m/s)

a : slope of the airplane normal force curve (/rad)

U_{de} : derived gust velocity (m/s)

U_{ref} : The reference gust velocity in equivalent airspeed (m/s)

W/S : wing loading (N/m²)

$K_g = \frac{0.88\mu_g}{5.3 + \mu_g}$	$\mu_{g} = \frac{2\left(\frac{W}{S}\right)}{\rho \cdot c \cdot a \cdot g}$
U _{de} @ V _C	15.24 m/s (SL \rightarrow 6096 m)
U _{de} @ V _D	0.5 Ude @ Vc
U _{ref} @ V _C	17.07 m/s (SL)
	17.07 m/s \rightarrow 13.41 m/s (SL \rightarrow 4572 m)
	13.41 m/s \rightarrow 7.92 m/s (4572 m \rightarrow 15240 m) for FAR 25
	13.41 m/s \rightarrow 6.36 m/s (4572 m \rightarrow 18288 m) for CS 25
U _{ref} @ V _D	0.5 U _{ref} @ V _C

9.4 Performances- Stall speed

		FAR CS 2	23 23		FAR 25
	N ^a	U ^a	A ^a	Ca	
Vs ^b	≤ 61 kts if (n >	≤ 61 kts i 1 and W < 6000	f_n ≤ 1 lb and RC OEl <	RC _{Min} OEI) ^c	
Vsr ^b					$\geq \frac{V_{CLMx}}{\sqrt{n_{zw}}}$

^a Cf. FAR 23.3 Airplane categories for the definition of each category

^b Cf. FAR 23.49 - CS 23.49 : Stalling speed - FAR 25.103 - CS 25.103 : Stall speed

° Cf. FAR 23.67 - CS 23.67 : Climb: One engine inoperative

n : Number of engines

 n_{zw} : Load factor normal to the flight path at V_{CLMx}

Annex 10. Materials in aviation

10.1 Percentage of composite

10.2 Current aircraft

10.2.1 Next generation aircraft

Annex 11. The power-plant

11.1 Introduction

The engine is one component of the propulsion system of the aircraft that is used to generate the thrust.

In aviation, most of the engine are internal combustion engine. They could be classified in 2 categories: shaft engines which drive a propeller, and reaction engines which generate thrust. Electric motors are used on very small aircraft (radio controlled aircraft or unmanned aerial vehicles)

The selection of engine type is function of different parameters: the maximum power required, the flight speed and the flight altitude.

A single engine aircraft has the engine in the fuselage in a tractor or pusher configuration. A multi engine aircraft, most of the time, has the engines on both sides of the fuselage, on or below the wing.

Sometimes a twin engine propeller driven aircraft may have the engines located in the fuselage in a push-pull configuration, one engine in the front and one engine in the rear of the fuselage.

11.2	Summary
------	---------

Definition	Mechanical device used to generate power
Category	Internal combustion engine - Shaft engine - Piston - Turboprop - Turboshaft - Reaction engine - Turbojet - Turbofan Electric
Application	Piston : Light aviation, UAV Turboprop : low speed and high power aircraft (transport aircraft) Turboshaft : Helicopter Turbojet : High speed (military aircraft) Turbofan : Long range, high speed aircraft Electric : UAV
Position	 Single engine : on the fuselage, in a tractor or pusher configuration Multi engine: Under the wing for transport aircraft, In the fuselage for military fighters

11.3 Thrust

The equation of the thrust provided by the propulsion system is:

 $\mathbf{T} = \mathbf{m} \cdot \mathbf{a} = \dot{\mathbf{m}} \cdot (\mathbf{V} - \mathbf{V}_0)$

With:

Т	Thrust [N]
ṁ	Mass flow rate [kg/s]
а	Fluid acceleration [m/s ²]
V ₀	Free stream fluid velocity [m/s]
V	Exhaust fluid velocity [m/s]

The thrust will be maximized if

- 1. The mass flow rate is maximized (7)
- 2. The fluid acceleration is maximized (7), high fluid velocity.

11.4 Propulsion efficiency

The propulsion efficiency is defined as the ratio between the thrust (or power) obtained to the thrust (or power) expanded

$$\eta_P = \frac{P}{P_{expended}} = \frac{2}{V/V_0 + 1}$$

With:

V ₀	Free stream fluid velocity [m/s]
V	Exhaust fluid velocity [m/s]

There is an unavoidable tradeoff between thrust and efficiency. For maximum thrust, the ratio between exhaust and free stream velocity must be very high. But for maximum efficiency, this ratio must be close to unity...

11.5 Engine technology

11.5.1 Introduction

There exist different types (technology) of propulsion systems:

- Electric engine & propeller
- Piston engine & propeller
- Turbopropulsor
- Turbofan
- Turbojet

According to the flight speed and flight altitude, one propulsion system will be preferably used from another.

11.5.2 Turbojet

Advantages

- Low friction
- Little wear
- Long service life (20.000 30.000 h)
- Simplicity
- Low cost
- Low drag

Drawbacks

- High exhaust gas velocity (500 600 m/s) in order to reach a high thrust
- Low efficiency (30%) at subsonic flight speed

Turbojet engines are used on high speed (supersonic) aircraft.

11.5.3 Turbofan

In order to improve the propulsion efficiency, the exhaust fluid velocity is reduced. In order to increase the thrust, the mass flow is increased using a fan, which works like a compressor with a low compression ratio.

The bypass ratio is the ratio between the mass flow passing through the fan and the mass passing through the turbine (used for combustion).

$$T = m \cdot a = \dot{m}_{jet} \cdot (V_{jet} - V_0) + \dot{m}_{fan} \cdot (V_{fan} - V_0)$$

Advantages

- High global efficiency (50%)
- Low fuel consumption (0.03 kg/N.h @ TO, SL, ISA conditions)
- Low CO₂ emissions

Drawbacks

- Higher weight
- Higher drag

High bypass turbofan engines are used on subsonic transport aircraft.

11.5.4 Turbopropulsor

A turbopropulsor is a low-power turbofan with a very high bypass ratio. The fan is replaced by a propeller. In order to have a good propeller efficiency (> 80%), a gearbox is used between the turbine (@ 8.000 - 15.000 t/min) and the propeller (800 - 2000 t/min).

Advantages

- High power-to-weight ratio
- Very low fuel consumption
- STOL capability

Drawbacks

- Limited flight speed
- High noise level
- High weight due to the gearbox
- Lubrication
- Vibrations

Turbopropulsor engines are used on low speed transport aircraft.

11.5.5 Piston & propeller

Most commonly used propulsion system when the need of power is lower than 230 kW (300 hp).

A comparison between the working cycle of a turbo-jet engine and a piston engine.

Advantages

- Low cost

Drawbacks

- Heavy
- High level of vibrations due to the oscillating motion of the pistons
- High friction
- Low efficiency (30%)
- Short service life (2.000 3.000 h)

11.5.6 Electric & propeller

More and more used for low-powered systems like micro-UAS.

Advantages

- Low cost
- No limit in altitude (except for the propeller)
- No vibration
- No gearbox
- Light (if the engine is taken alone)
- High efficiency (95%)

Drawbacks

- Heavy (if the batteries are taken into account)
- Short endurance

Annex 12. Lifting Surface Design Parameters

Some very important design criteria will be explained in such a way to understand their impact on the whole aircraft. The reader will understand that, most of the time, the designer will need to make compromises.

- 1. Wing vertical position on the fuselage
- 2. Lifting surface aspect ratio
- 3. Lifting surface sweep angle
- 4. Lifting surface taper ratio
- 5. Lifting surface dihedral effect
- 6. Lifting surface airfoil selection

12.1 Wing vertical position on the fuselage

				-	2
	Mid wing	Shoulder wing	السمين High wing	iterian Parasol w	ing
				Low	Hig
tructure & Aerody	vnamics				
Favorable ground	d effect in takeoff &	landing		+	-
Moving surfaces	closer to the groun	d are more easily dam	naged	-	+
High wings tend to headroom. (more	o be strutted becau draggy than low-w	ise they are often thinr inged arrangements)	er so as to leave enough	+	-
Low wing structur	re is useful anchora	age and stowage for la	anding gear	+	-
Landing gear can	be made shorter a	and lighter		+	-
Deeper spar can	be used (can be in	corporated into seat s	tructure)	+	-
Increase the dept	th of the fuselage if	deeper spar is neede	d	+	-
Fairing between y face of the wing g while imperfection increase lift)	wing root and fuse generates 66% of t ns beneath the roo	lage more critical aero he total lift and some i ot of a high wing incre	odynamically (upper sur- s lost by imperfect fillets, ease static pressure and	-	+
Stability					
High wing provide	es more <u>lateral stat</u>	<u>oility</u> through dihedral o	effect	-	+
No dihedral need works against dih with high wing)	<u>ed,</u> easy to build (a edral. So that low-v	high wing augments o vinged airplanes need	lihedral, while a low wing more dihedral than those	-	÷
Safety & Visibil	ity				
Better fields of vie	ew from above the	horizon, downwards (l	better touring aircraft)	-	+
Better fields of vie	ew from above the	horizon, upwards (agi	le aircraft)	+	-
Visibility in the dir	rection of turn			+	-
Manoeuvrability,	Agility (good fields	of view in the directior	of turn and manoeuvre)	+	-
Crashworthiness, tough and resilient structure is needed to take the weight of the aircraft when on its back					÷
Crashworthiness,	, easily exit from th	e aircraft		-	+
Note: the extend agile airplane wh view than a state	of cockpit glazing ich regularly excee ly transport machin	should be determined ds angles of bank of (e, which rarely exceed	d by the pilot needs. An 60° needs wider fields of ds 30°		
Aircraft catego	ry				
Touring aircraft				-	+
Agile aircraft				+	_

12.2 Lifting surface aspect ratio

In selecting the lifting surface aspect ratio the designer must give considerations to several general requirements. These requirements are related to:

- 1. Aerodynamics
- 2. Structural weight
- 3. Safety

Introduction

When a wing is generating lift, it has a reduced pressure on the upper surface and an increased pressure on the lower surface. This pressure difference tends to move the air from the bottom of the wing, moving to the top. This is not possible for a 2D-flow (airfoil profile) but for a real 3D-flow (3D-wing) the air can escape around the wing tip. Air escaping around the wing tip lowers the pressure difference between the upper and lower sur-

→ Aerodynamics

AR as high as possible $(\mathbf{7})$ to reduce the induced drag.

Flight conditions concerned: climb, maxi range and maxi endurance

→ Structural weight

AR as low as possible (\checkmark) to reduce the structural weight of the lifting surface $W_w = fct(AR_w^{0.6})$

→ Safety

AR changes modify the stalling angle. Surface with low aspect ratio will stall at a higher angle of attack than surface with high aspect ratio

<u>A canard surface</u> (**7**) can be made to stall before the main wing by making it a very high aspect ratio surface. <u>Horizontal tails</u> (**1**) tend to be of lower aspect ratio.

Δ (AR)	ΔW_{w}
-20%	-12.5%
-10%	-6.1%
10%	5.9%
20%	11.6%

12.3 Lifting surface sweep angle

In selecting the lifting surface sweep angle the designer must give considerations to several general requirements. These requirements are related to:

- 1. Aerodynamics
- 2. Structural weight
- 3. Balance & Stability

Introduction

Wing sweep is used preliminary to reduce the adverse effects of transonic and supersonic flow. The speed of the air passing on the upper surface of wing is increased. The critical Mach number is the speed at which the local flow on the upper surface reaches the speed of sound. If the speed continues to increase, a shock wave will appear and the drag will drastically increase.

→ High speed aerodynamics

Sweep angle (π) is favorable for high speed flight to delay the apparition of wave drag. Shock formation on a swept wing is determined by the air velocity in a direction perpendicular to the leading edge of the wing.

→ Structural weight

Sweep angle as low as possible (\checkmark) to reduce the structural weight of the lifting surface $W_w = fct(cos(\Lambda)^{-0.9})$

Λ	ΔW_{w}
0°	0,0%
10°	1,4%
20°	5,8%
30°	13,8%

→ Balance & Stability

Sweep Angle (\neg, \lor) is necessary to balance the aircraft in order to move the Aerodynamic Center (AC) far enough from the CG position for balance.

Sweep angle (**オ**) improves stability. A swept wing has a natural dihedral effect (rolling moment caused by sideslip). Roughly speaking, 10° of sweep provides about 1° of effective dihedral.

If an aircraft has its vertical tails at the wing tips, sweeping the wing (\neg) will push the tails aft, increasing their effectiveness.

12.4 Lifting surface taper ratio

In selecting the lifting surface taper ratio the designer must give considerations to several general requirements. These requirements are related to:

- 1. Aerodynamics
- 2. Structural weight
- 3. Manufacturing

Introduction

Taper ratio is the ratio between the tip chord and the root chord. Taper affects the distribution of the lift along the span of the lifting surface. Minimum drag due to lift or "induced" drag occurs when the lift is distributed in an elliptical fashion. For an untwist and unswept wing, this occurs when the wing planform is shaped as an ellipse. An elliptical planform is difficult and expensive to build. However, a wing with a taper ratio 0.4, which is simpler to build, produces lift distribution very close to the elliptical shape.

➔ Aerodynamics

Taper ratio (\mathbf{Y}) up to 0.4 will reduce the induced drag.

→ Structural weight

Taper ratio as low as possible (\Im) to reduce the structural weight of the lifting surface $W_w = fct(TR^{0.04})$

Δ (TR)	ΔW_{w}
-10%	-0.4%
-20%	-0.9%
-30%	-1.4%
-40%	-2.0%
-50%	-2.7%
-60%	-3.6%

→ Manufacturing

A wing with a taper ratio lower than 1 is more difficult and more expensive to build than a rectangular wing (TR = 1)

A wing with a given taper ratio is easier and less expensive to build than an elliptical wing.

12.5 Lifting surface dihedral angle

Anhedral

Upward cranked tips

Introduction

Dihedral effect tends to roll the aircraft level when side slipping.

Dihedral is the angle of the wing with the horizontal when seen from the front. Positive when the tip is higher than the root.

Three characteristics of the wing have an influence on the dihedral effect:

- 1. The wing dihedral angle itself
- 2. The vertical position of the wing on the fuselage
- 3. The wing sweep angle

→ The wing dihedral angle

During a sideslip, the lateral wind coming from the sideslip direction increases the angle of attack and therefore the lift. The resulting moment is approximately proportional to the dihedral angle.

→ The vertical position of the wing on the fuselage

The position of the wing on the fuselage has an influence on the dihedral effect, with the greatest effect provided by a high position. The fuselage in sideslip pushes the air over and under itself. If the wing is high-mounted, the air pushed over the top increases the angle of attack between the air and the wing and therefore increases the lift. The reverse is true for a low-mounted wing.

→ The wing sweep angle

Wing sweep produces a rolling moment due to sideslip caused by the change in relative sweep of the left and right wings. Roughly speaking, 10° of sweep provides about 1° of effective dihedral.

Notes

Due to additive effect of sweep and wing position, many high-winged transports such as the Lockheed C-5 require a negative geometric dihedral angle to avoid an excess of effective dihedral, which produces "Dutch Roll", a repeated side-to-side motion involving roll and yaw. To counter a Dutch roll tendency, the vertical tail must be increased, which increases weight and drag.

Historical values

	Wing position				
	Low Mid High				
Unswept	5° to 7°	2° to 4°	0° to 2°		
Subsonic swept wing	3° to 7°	-2° to 2°	-5° to -2°		
Supersonic swept wing	0° to 5°	-5° to 0°	-5° to 0°		

Annex 13. Lifting surface airfoil profile

13.1 Introduction

If a horizontal wing is cut by a vertical plane, parallel to the center line, the shape of the section is the airfoil section.

The airfoil is probably one of the most important characteristics of an airplane. It affects the cruise speed, the stall speed, the takeoff and landing distances, handling qualities and overall aerodynamic efficiency during all phases of flight.

There are two types of airfoils:

- Cambered airfoil
- Symmetrical airfoils

The cambered airfoil will be used on the wings to generate the upward lift. The symmetrical airfoils will be used on the stabilizers to generate lift in both directions (up and down for the horizontal stabilizer or left and right for the vertical stabilizer)

The shape of the airfoil will be function of the flight speed of the airplane. An airfoil designed to operate in supersonic flow will have a

sharp leading edge to reduce supersonic drag, compared to a slow-speed airplane which will have a round nose.

13.2 Aerodynamic performance

The aerodynamic performance of an airfoil are given in general in three graphs.

- One graph which shows the correlation between the lift coefficient and the angle of attack
- One graph which shows the correlation between the drag coefficient and the lift coefficient. This graph is also named the drag polar
- One graph which shows the correlation between the pitching moment coefficient and the lift coefficient

Symmetrical airfoil

www.oad.aero

13.2.1 Lift Curve

The lift curve is characterized by:

α	is the angle of attack. This value is always small with a maximum value of about 15°
CI	is the lift coefficient
α_0	is the zero-lift angle of attack
αcimx	is the angle of attack for maximum lift coefficient, also named stalling angle of attack
Clo	is the lift coefficient which is reached at zero angle of attack
СІмх	is the maximum lift coefficient. Typical values of this maximum lift coefficient lie between 0,8 and 1,6
a 0	is the lift gradient. This value is close to 2 π

Looking at the curve of the lift coefficient, a symmetrical airfoil will generate no lift at zero angle of attack, while a cambered airfoil will generate no lift at a negative angle of attack.

13.2.2 Drag Curve

The drag curve is characterized by:

C _{DMin}	is the minimum drag coefficient
Laminar bulkhead	is the range of C_I where the drag is minimum

13.2.3 Moment Curve

The moment curve is characterized by:

 C_{m0} is the moment coefficient at zero lift coefficient

13.3 Geometric parameters that affect the performance of an airfoil

 CI_{Mx} increases with increasing the relative thickness up to 15%, beyond CI_{Mx} start decreasing.

The minimum drag coefficient increases with the relative thickness.

The nose radius strongly affects the angle of attack capability. A large radius of curvature will lead to a high lift coefficient and gentle stall break. A small leading edge radius has sharp stall break.

The maximum camber affects the value of a₀, Cl₀ and Cm₀ The maximum camber also affects the maximum lift coefficient and the minimum drag coefficient.

The slope of the camber line at the leading edge position affects the values of α_0 and Cl_0

The slope of the camber line at the trailing edge position affects the values \mbox{Cm}_0

The slope of the camber line affects the drag raise characteristics

The trailing edge angle affects the profile drag

A high glide ratio is reached with a low maximum relative thickness and a low camber

Annex 14. Lifting surface airfoil selection

In selecting the airfoil sections the designer must give considerations to several general requirements. These requirements are related to:

- 1. Aerodynamics
- 2. Structural weight
- 3. Manufacturing
- 4. Safety

➔ Aerodynamics

Maximum lift coefficient, as high as possible to minimize wing wetted area

<u>Drag coefficient</u> during the main flight condition (flight at a given lift coefficient and Reynolds Number) as low as possible to minimize required power

<u>Drag coefficient</u> during low speed flight (takeoff and climb) as low as possible to minimize required power

Pitching moment coefficient as low as possible to avoid high torsion loads and high trim drag

<u>Critical Mach Number</u> must be sufficiently high to ensure that critical compressibility effects are avoided in the case of aircraft flying at high speed (> Mach 0.7)

Sensitivity to contamination and dirt must be as low as possible

→ Structural weight

Relative thickness must be as high as possible in the interest of low structural weight

Δ (t/c)	ΔW_{w}	$W_w = fct((t/c)_w^{-0.3})$
-20%	6.9%	
-10%	3.2%	
10%	-2.8%	
20%	-5.3%	

➔ Manufacturing

Sensitivity to manufacturing variations must be as low as possible

→ Safety

<u>Stall characteristics</u> must be as gentle as possible to warn the pilot that a loss of lift will occur and to minimize the loss of altitude during the stall

<u>Unfortunately</u> all of these requirements cannot be satisfied at the same time and compromise must be done.

Annex 15. The high lift devices

The main objective of the high lift device is to increase the maximum lift coefficient of a lifting surface. This is achieved most of the time by increasing the wing camber and sometimes the wing area at the same time.

There are two types of mechanical high lift devices:

- Trailing edge high lift device
- Leading edge high lift device

The choice will affect the maximum lift coefficient, and therefore the stall speeds and the takeoff and landing distances of the aircraft.

15.1 Trailing edge aerodynamic devices

- Plain flap
- Split flap
- Single slotted flap
- Double slotted flap
- Fowler flap

The approximate maximum lift contribution is:

Plain flap	0.9
Split flap	0.9
Single slotted flap	1.3
Fowler flap	1.3.c'/c
Double slotted flap	1.6 c'/c

The <u>plain flap</u> is the hinged part of the trailing edge that moves downward in order to increase the camber of the airfoil.

The <u>split flap</u> is like the plain flap except that only the lower surface of the airfoil moves downward. The lift increment is the same than the plain flap but the drag increment is HIGHER and the change in pitching moment is LOWER.

The <u>slotted flap</u> is a plain flap with a gap between the wing and the flap. The hole allows high-pressure air from the lower surface of the wing to reach the upper surface of the wing in order to delay separation and stall

The <u>Fowler flap</u> is a slotted flap which moves rearward when deflected. This provides 1) an increase of the camber of the airfoil, 2) an increase in wing area.

15.2 Leading edge aerodynamic devices

- Leading edge flap
- Kruger flap
- Leading edge slot
- Leading edge slat

The approximate maximum lift contribution is:

Leading edge slot	0.2
Leading edge flap	0.3
Kruger flap	0.3
Leading edge slat	0,4 c'/c

The <u>leading edge slot</u> is a hole which allows high-pressure air from the lower surface of the wing to reach the upper surface of the wing in order to delay separation and stall.

The <u>leading edge flap</u> is the hinged part of the leading edge that moves down in order to increase the camber of the airfoil.

The <u>leading edge slat</u> provides 1) an increase of the camber of the airfoil, 2) a slot and 3) an increase in wing area

The <u>Kruger flap</u> works as a deflector, forcing the air to go over the top of the wing. Mostly used by large airliners

15.3 Effects of high lift devices

The <u>non-extending flaps</u> such as the plain, split or slotted flaps act as an increase in camber, which moves the angle of zero lift to the left and increases the maximum lift. The slope of the curve remains unchanged, and the angle of stall is somewhat reduced.

An <u>extending flap</u> such as the Fowler flap acts much like the other flaps as far as zero-lift angle and stall angle are concerned. However, the wing area is increased as the flap deflects, so the wing generates more lift at any given angle of attack compared to the non-extending flap.

Because the lift coefficient is referenced to the <u>original wing area</u>, not the <u>extended wing area</u>, the effective slope of the lift curve for an extending flap is increased by approximately the ratio of the total extended wing area to the original wing area.

Annex 16. The aerodynamic centre

16.1 Aerodynamic centre / Symmetric airfoil

For symmetric airfoils, the center of pressure does not vary with lift coefficient. The center of pressure coincide with the aerody-namic center.

In subsonic flight, for symmetric airfoils, the aerodynamic center is located at 25% of the chord, measured from the leading edge of the airfoil.

In supersonic flight, due to compressibility effects, the aerodynamic center moves to the 50% chord position.

16.2 Aerodynamic centre / Cambered airfoil

For non-symmetric airfoils, or cambered airfoils, the center of pressure varies with lift coefficient. The center of pressure does not coincide with the aerodynamic center.

In subsonic flight and for incidences up to 10°, the aerodynamic center is located close to, not in general on, the chord line, between 23% and 25% of the chord, behind the leading edge. Compressibility tends to move it backwards. For thin airfoil in supersonic flow, the aerodynamic center is theoretically at 50% chord position.

For a conventional cambered airfoil, at high lift coefficient, close to the maximum lift coefficient, the center of pressure lies a little behind the quarter-chord point. When the lift coefficient reduces, the center of pressure moves to the rear. When the lift coefficient is equal to zero, a cambered airfoil generates a nose-down pitching moment. That means that the center of pressure is located at an infinite distance behind the airfoil

Annex 17. Introduction to stability

17.1 Static stability

Static stability of a ball in a U-Shape describes the tendency of the ball to go back to its original position.

- Statistically stable, the ball will roll back to its original position
- Statistically unstable, the ball goes further and further its original position
- Statistically neutral, the ball remains in the disturbed position

Static stability of an aircraft describes the tendency to go back to its original position when subjected to disturbance acting on it.

- Statically stable means that the aircraft is able to go back to its original position after disturbance.
- Statically unstable means that the aircraft continues to diverge from its original position
- Statically neutral means that the aircraft remains in its disturbed position

17.2 Dynamic stability

Dynamic stability describes the form of the motion of an aircraft when it tries to return to its original position.

- Dynamically stable means that the original position will be retrieved after a series of decaying oscillations
- Dynamically neutral means that the aircraft continues the oscillatory motion without decay in magnitude.
- Dynamically unstable means that the oscillatory motion increases in magnitude

17.3 Stability about the Axis

The stability of an airplane determines its ability to be trimmed to fly hands-off at any speed.

17.3.1 Longitudinal stability

The longitudinal or pitch stability is stability about the lateral axis.

Longitudinal stability is provided primarily by the horizontal tail surface

Because the aerodynamic center is behind the center of gravity, an increment of lift will produce a nose down pitching moment. This nose down pitching moment will reduce the angle of attack, and at the same time the lift. The airplane goes back automatically in its original position.

The position of the center of gravity, in front of the aerodynamic center, is the condition for longitudinal stability. The greater this distance the more stable the aircraft. The lesser this distance the less stable the aircraft, but the more agile the aircraft

17.3.2 Lateral stability

The lateral or roll stability is stability about the longitudinal axis.

Lateral stability is provided primarily by the dihedral of the wing

Dihedral is the angle between the wing and the lateral axis. Positive when the tip of the wing is at a higher position than the root of the wing. When an airplane enters in a downward sideslip toward the low wing, the direction of the relative wind changes. The low wing experience an increase of lift while the high wing experience a reduction of lift. This is due to a modification of the angle of attack. The combined forces tend to roll back the aircraft in its wings-level attitude

17.3.3 Directional stability

The directional or yaw stability is stability about the vertical axis.

Directional stability is provided primarily by the vertical tail surface.

Most airplane are designed with more projected area behind the center of gravity than forward it. When an airplane enters a sideslip, the relative wind strikes the side of the fuselage and the vertical tail. Since the force exerted on the airplane is behind the center of gravity, the airplane tends to yaw in the direction of the relative wind

Annex 18. Weight estimation

18.1 Wing, W_w (3)

$$W_{w} = MCF_{w} \cdot 0.14278 \cdot TR_{w}^{0.04} \cdot \left(\frac{AR_{w}}{(\cos \Lambda_{25w})^{2}}\right)^{0.6} \cdot \left(\frac{100 \cdot (t/c)_{w}}{\cos \Lambda_{25w}}\right)^{-0.3} \cdot q_{cr}^{0.006} \cdot S_{w}^{0.758} \cdot (1.5 \cdot n_{1} \cdot W_{TO})^{0.49} \cdot W_{fw}^{0.0035} + (1.5 \cdot n_{1} \cdot W_{TO})^{0.49} \cdot W_{$$

18.2 Horizontal Tail, W_{HT} (3)

$$W_{HT} = MCF_{HT} \cdot 0.044194 \cdot TR_{HT}^{-0.02} \cdot \left(\frac{AR_{HT}}{\left(\cos\Lambda_{25HT}\right)^2}\right)^{0.043} \cdot \left(\frac{100 \cdot \left(t/c\right)_{HT}}{\cos\Lambda_{25HT}}\right)^{-0.12} \cdot q_{cr}^{-0.168} \cdot S_{HT}^{-0.896} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.414} \cdot S_{HT}^{-0.02} \cdot \left(\frac{AR_{HT}}{\left(\cos\Lambda_{25HT}\right)^2}\right)^{-0.12} \cdot \left(\frac{100 \cdot \left(t/c\right)_{HT}}{\cos\Lambda_{25HT}}\right)^{-0.12} \cdot \left(\frac{100 \cdot \left(t/c\right)_{HT}}{\cos\Lambda_{25HT}}\right)^{-$$

18.3 Vertical Tail, W_{VT}

 $W_{VT} = MCF_{VT} \cdot N_{VT} \cdot 0.22136 \cdot TR_{VT}^{0.039} \cdot (1+0.2 \cdot a) \cdot \left(\frac{AR_{VT}}{\left(\cos\Lambda_{25VT}\right)^2}\right)^{0.357} \cdot \left(\frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}}\right)^{-0.49} \cdot q_{cr}^{0.122} \cdot S_{VT}^{0.873} \cdot (1.5 \cdot n_1 \cdot W_{TO})^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(\frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}}\right)^{-0.49} \cdot q_{cr}^{0.122} \cdot S_{VT}^{0.873} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(\frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}}\right)^{-0.49} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(\frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}}\right)^{-0.49} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(\frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}}\right)^{-0.49} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} + \frac{100 \cdot \left(t/c\right)_{VT}}{\cos\Lambda_{25VT}} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.376} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{$

With:

	а
Conventional	0
T-tail	1

18.4 Canard Surface, W_{crd} (3)

 $W_{crd} = MCF_{crd} \cdot 0.044194 \cdot TR_{crd}^{-0.02} \cdot \left(\frac{AR_{crd}}{\left(\cos\Lambda_{25crd}\right)^2}\right)^{0.043} \cdot \left(\frac{100 \cdot \left(t/c\right)_{crd}}{\cos\Lambda_{25crd}}\right)^{-0.12} \cdot q_{cr}^{-0.168} \cdot S_{crd}^{-0.896} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.414}$

18.5 Winglets, Wwgl

$$W_{wgl} = MCF_{wgl} \cdot N_{wgl} \cdot 0,22136 \cdot TR_{wgl}^{0,039} \cdot \left(\frac{AR_{wgl}}{\left(\cos\Lambda_{25wgl}\right)^2}\right)^{0,357} \cdot \left(\frac{100 \cdot \left(t/c\right)_{wgl}}{\cos\Lambda_{25wgl}}\right)^{-0,49} \cdot q_{cr}^{0,122} \cdot S_{wgl}^{0,873} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0,376}$$

18.6 Fuselage, W_{fus} (3)

$$W_{fus} = MCF_{fus} \cdot 0,13274 \cdot q_{cr}^{0,241} \cdot \left(\frac{L_{fus}}{MD_{fus}}\right)^{-0,072} \cdot L_{APfus}^{-0,051} \cdot WA_{fus}^{1,086} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0,177} + W_{press}^{1,086} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{-0,177} + W_{press}^{1,086} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{-0,177$$

18.7 Nacelle, Wnac

$$W_{nac} = MCF_{nac} \cdot 0,13274 \cdot q_{cr}^{0,241} \cdot \left(\frac{L_{nac}}{MD_{nac}}\right)^{-0.072} \cdot WA_{nac}^{1.086} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.177}$$

18.8 Tailboom, W_{tb}

$$W_{tb} = MCF_{tb} \cdot N_{TB} \cdot 0,13274 \cdot q_{cr}^{0,241} \cdot \left(\frac{L_{tb}}{MD_{tb}}\right)^{-0.072} \cdot WA_{tb}^{-1.086} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.177}$$

18.9 Landing gear (main), W_{LGM} (6)

 $W_{LGM} = MCF_{LGM} \cdot a \cdot b \cdot c \cdot W_{TO}$ With:

	а	b	С
Conventional, fixed	1.0	0.8	0.045
Conventional, retractable	1.5	0.8	0.045
Tricycle, fixed	1.0	0.7	0.055
Tricycle, retractable	1.5	0.7	0.055
Single wheel, fixed	1.0	0.4	0.045
Single wheel, retractable	1.5	0.4	0.045

18.10 Landing gear (auxiliary), WLGA (6)

 $W_{LGA} = MCF_{LGA} \cdot a \cdot b \cdot c \cdot W_{TO}$

With:

	а	b	С
Conventional, fixed	1.0	0.2	0.045
Conventional, retractable	1.5	0.2	0.045
Tricycle, fixed	1.0	0.3	0.055
Tricycle, retractable	1.5	0.3	0.055

18.11 Propulsion, W_p (6)

$$W_{p} = MCF_{p} \cdot N_{eng} \cdot (a \cdot W_{engdry} - W_{prop})$$

With:

	а
4 stroke	1.30
2 stroke	1.30
4 stroke, Diesel	1.30
2 stroke, Diesel	1.30
Rotary	1.90
Turbopropeller	1.70
Turbojet	1.25
Electric	1.00

18.12 Propeller, W_{prop}

$$W_{prop} = MCF_{prop} \cdot N_{prop} \cdot a \cdot \left(\frac{P_{eng}}{1000}\right)$$

With:

	а
Hydraulic (variable pitch – constant speed)	0.0888
Electric (variable pitch – constant speed)	0.1167
Fixed – Ground adjustable	0.0572

18.13 Propeller Shaft, W_{PS}

$$W_{PS} = MCF_{PS} \cdot 1.1 \cdot \left[\pi \cdot \left(0.5 \cdot 0.01 \cdot D_{PS} \right)^2 \cdot 79 \right] \cdot I_{PS}$$

18.14 Fuel System, W_{FSyst} (3)

$$W_{FSyst} = MCF_{FSyst} \cdot 0,4299 \cdot N_{eng}^{0,157} \cdot N_{Ftank}^{0,242} \cdot V_{Ftot}^{0,726}$$

18.15 Control System, W_{CSyst} (3)

 $W_{CSyst} \ = \ MCF_{CSyst} \cdot 2,7519 \cdot 10^{-4} \cdot L_{fus}^{-1,536} \cdot b_w^{-0,371} \cdot \left(1.5 \cdot n_1 \cdot W_{TO}\right)^{0.8}$

18.16 Electrical System, W_{ESyst} (6)

 $W_{ESyst} = MCF_{ESyst} \cdot 0.03 \cdot W_{TO}$

18.17 Hydraulic System, W_{HSyst} (6)

 $W_{HSyst} = MCF_{HSyst} \cdot 0.03 \cdot W_{TO}$

18.18 Avionics, Winst (6)

 $W_{inst} = MCF_{inst} \cdot 0.015 \cdot W_{TO}$

18.19 Furnishings, W_{furn}

 $W_{furn} = MCF_{furn} \cdot (0,000004 \cdot W_{TO}^2 + 0,0325 \cdot W_{TO})$

18.20 Air Conditioning, W_{AirCond} (3)

 $W_{AirCond} \ = \ MCF_{AirCond} \cdot 0,20743 \cdot W_{TO}^{-0.52} \cdot N_{occ}^{-0.68} \cdot W_{inst}^{-0.17} \cdot M^{0.08}$

18.21 Pressurization, W_{press} (3)

 $W_{press} = MCF_{press} \cdot \left(5,4026 + 2,4621 \cdot \left(V_{press} \cdot \Delta_{press \ fus}\right)^{0,271}\right)$

Figure 2: Fairchild A-10A

Copyright © Airbus Military S.L. 2006

Figure 4: Grumman A-6 Intruder