centralelille

Amplification: Généralités

Olivier Bou Matar, <u>Yannick Dusch</u>, Cécile Ghouila Houri, Marc Goueygou, Philippe Pernod, Bogdan Piwakowski, Cathy Sion, Abdelkrim Talbi, Nicolas Tiercelin

Électronique

Plan du cours

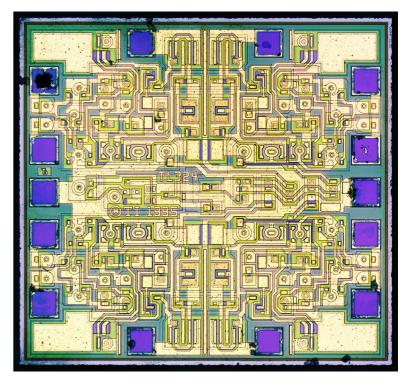
1) Généralités

2) Amplification de tension (amplificateur opérationnel)

3) Amplification de puissance

Généralités sur l'amplification : Histoire

Tube à vide (< 1950)

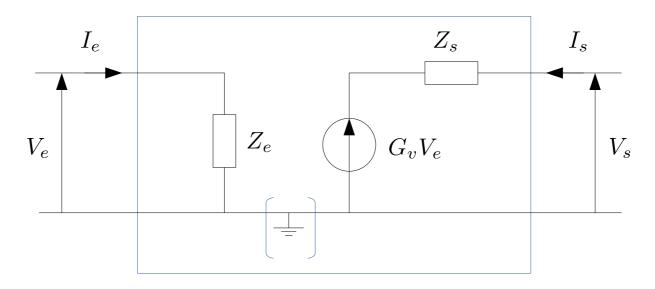


1^{er} transistor (1948)

Transistor discret

Amplificateur opérationnel LM 324 ~ 20 transistors

Caractéristiques d'un amplificateur

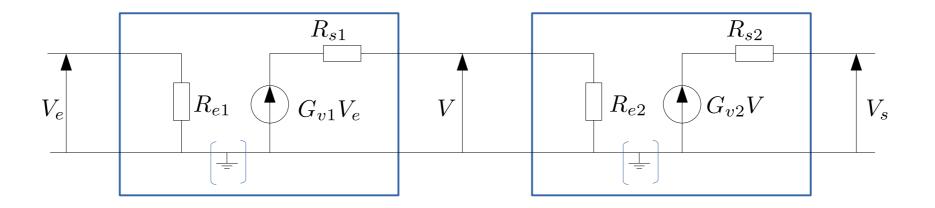

Caractéristiques d'un amplificateur :

- Les gains
- Les impédances d'entrée et de sortie
- La bande passante
- Le facteur et la température de bruit
- Les distorsions (Amplification de puissance)
- Le rendement (Amplification de puissance)
- La dynamique (Amplification de puissance)

Représentation quadripolaire d'un amplificateur

À partir de cette représentation quadripolaire, on définit :

• Le gain en tension :
$$G_v = rac{V_s}{V_e}$$
 $G_{v,\mathrm{dB}} = 20 \log_{10} G_v$


• L'impédance d'entrée :
$$Z_e = \left(\frac{V_e}{I_e} \right)_{I_s=0}$$

• L'impédance de sortie :
$$Z_s = \left(\frac{V_s}{I_s}\right)_{V_s=0}$$

Association de quadripôles

L'amplificateur équivalent a les caractéristiques suivantes :

Résitance d'entrée : $R_e = R_{e1}$ Résistance de sortie : $R_s = R_{s2}$

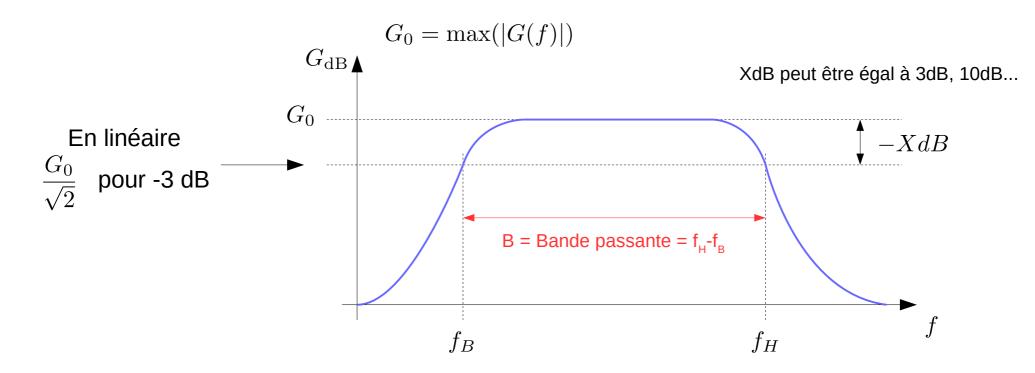
Gain en tension à vide : $G_v = G_{v1}G_{v2}rac{R_{e2}}{R_{e2}+R_{s1}}$

Atténuation

Gains en puissance et gain en courant

Gain en puissance :
$$G_p = \frac{P_s}{P_e}$$
 $G_{p,\mathrm{dB}} = 10 \log_{10} \left(G_p \right)$

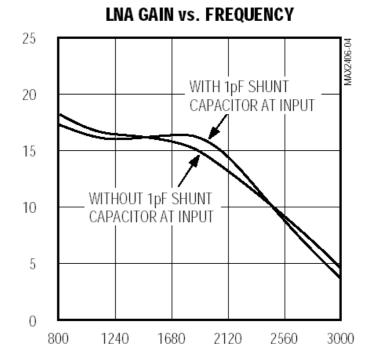
(principalement pour les amplificateurs RF)


Gain en courant :
$$G_i = \frac{I_s}{I_e}$$

$$G_p = G_v G_i$$

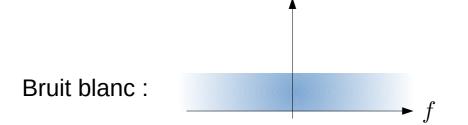
Bande passante

→ La bande passante peut être définie à partir du gain en puissance pour un amplificateur de puissance


Bande passante

Exemples:

Amplificateur audio (BF) TS4962M


Amplificateur (HF) LNA GSM/DCS RF2492

FREQUENCY (MHz)

Agitation thermique $\rightarrow N = k_B T B$

Facteur de bruit

$$F = \frac{(S/N)_e}{(S/N)_s}$$
 $F_{dB} = 10 \log_{10}(F)$

Température de bruit (Indépendante de T) :

$$T_N = (F - 1)T$$

N Puissance de bruit

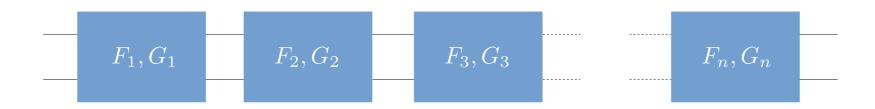
 k_B Constante de Boltzmann

T Température (en Kelvin!)

B Bande passante

F (@290K)	T_{N}
0.1dB	7K
0.5dB	36.6K
1dB	77K
3dB	300K
6dB	894K
10dB	2700K

Température de bruit (Indépendante de T) :

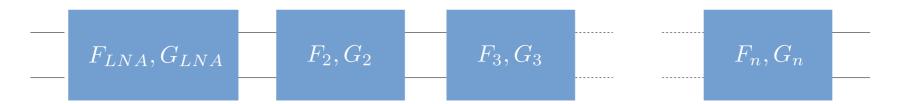

$$T_N = (F-1)T$$

$$T_b = \left[\frac{\left(\frac{S}{k_B T B}\right)}{\left(\frac{AS}{Ak_B T B + N}\right)} - 1\right] T = \frac{N}{k_B B}$$

Cas d'une chaîne de quadripôles :

Équation de Friis:

$$F_{total} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \ldots + \frac{F_n - 1}{G_1 G_2 \ldots G_{n-1}}$$


or

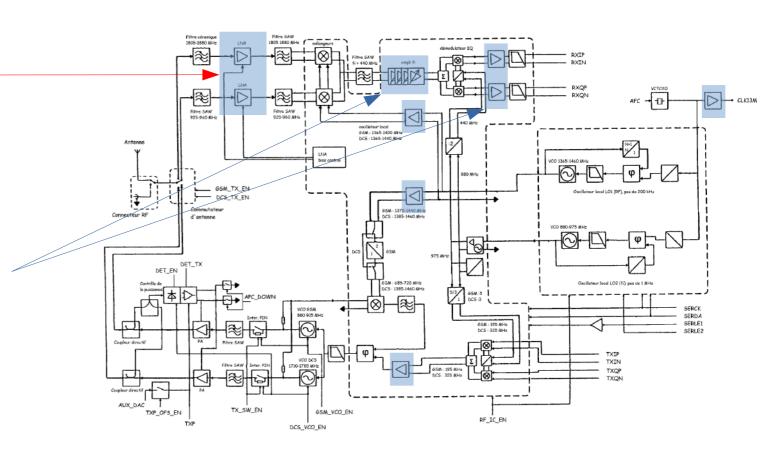
$$T_{total} = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + \ldots + \frac{T_n}{G_1 G_2 \ldots G_{n-1}}$$

Amplificateur faible bruit (Low Noise Amplifier, LNA):

$$F_{\text{total}} = F_{\text{LNA}} + \frac{F_2 - 1}{G_{\text{LNA}}} + \frac{F_3 - 1}{G_{\text{LNA}}G_2} + \dots = F_{\text{LNA}} + \frac{F_{\text{reste}} - 1}{G_{\text{LNA}}}$$

Si
$$G_{\rm LNA} \gg F_{\rm reste} - 1$$
 alors $F_{\rm total} \approx F_{\rm LNA}$

→ Les amplificateurs faible bruit sont utilisés pour l'amplification de signaux faibles dans les chaînes d'acquisition (capteurs par exemple)


Exemple de la téléphonie mobile

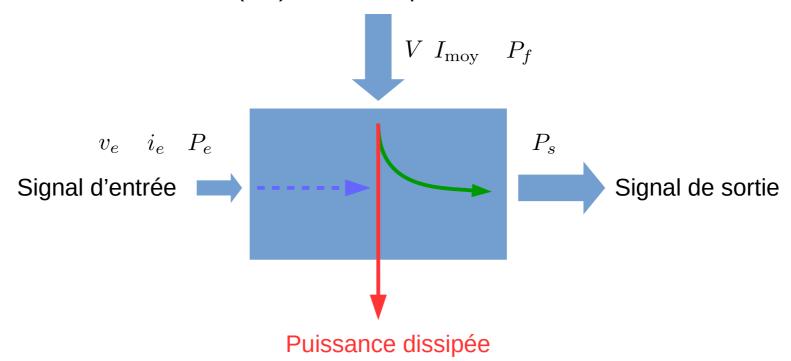
1^{er} étage d'amplification : **Amplificateur de type LNA** (Low Noise Amplifier)

Ordre de grandeur : RF2492 Dual-Band LNA/Mixer : $G_{dB,LNA}$ = 14 dB, $F_{dB,LNA}$ = 1,8 dB

Étages suivant d'amplification

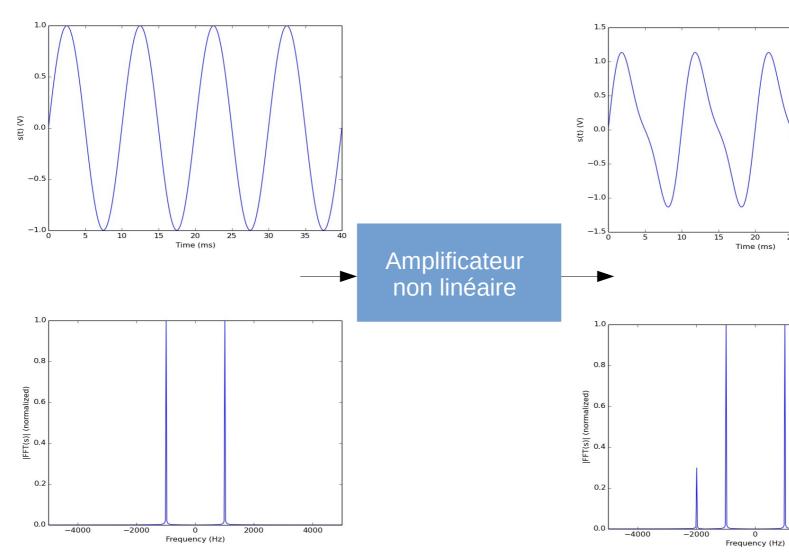
Ordre de grandeur : RF2492 Dual-Band LNA/Mixer : $G_{dB,mixer} = 13 dB$, $F_{dB,mixer} = 7 dB$

Pour le récepteur complet :

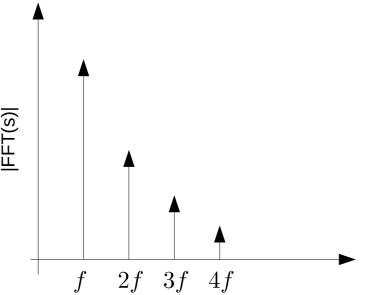


Ordre de grandeur : RF2492 Dual-Band LNA/Mixer : $G_{dB,rec}$ = 27 dB, $F_{dB,rec}$ = 2,2 dB

Rendement


(DC) Source de puissance

Rendement :
$$\eta = \frac{P_s}{P_f} = \frac{P_s}{P_s + P_d}$$



Signal périodique → Série de Fourier

$$s(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{+\infty} b_n \sin(n\omega_0 t)$$

$$a_0 = \frac{1}{T} \int_0^T s(t)dt \qquad a_n = \frac{1}{T} \int_0^T s(t) \cos(n\omega_0 t)dt \qquad b_n = \frac{1}{T} \int_0^T s(t) \sin(n\omega_0 t)dt$$

Taux de distorsion :

$$d = \frac{\sqrt{A_2^2 + A_3^2 + \dots + A_n^2}}{A_1} \quad A_n = \frac{a_n}{\sqrt{2}} \quad B_n = \frac{b_n}{\sqrt{2}}$$

Fréquence

Exemple 1: PBL 403 05, Amplificateur GSM Multibande

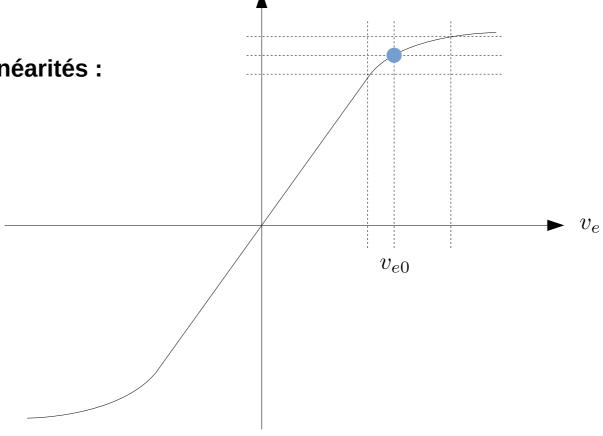
Electrical Characteristics for PA in GSM 900 mode:

 $V_{\text{CC}} = 3.2 \text{ V}, T_{\text{AMB}} = +25 \, ^{\circ}\text{C}, Z = 50 \, \Omega, P_{\text{IN}} = 10 \, \text{dBm}, f = 880 - 915 \, \text{MHz}$ and V_{APC} adjusted to give $P_{\text{OUT}} = 34.5 \, \text{dBm}$ unless othervise noted. Pulsed operation with pulse width of 577 μ s and a duty cycle of 1:8. $V_{\text{NEG}} = -4.0 \, \text{V}, V_{\text{SEL}} = 0.0 \, \text{V}.$

Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit	
Output Power	V _{APC} = 3.15 V	P _{out}	34.5	34.7		dBm	
Power added efficiency		P _{AE}	50	53		%	
2 nd harmonic	- 0 dBm < P _{out} < 34.5 dBm	2 f _o		-7.0	0	dBm	
3 rd harmonic	- 0 dBm < P _{out} < 34.5 dBm	3 f _o		-27	0	dBm	
Isolation	$P_{IN} = 11.5 \text{ dBm}, V_{APC} <= 0.5 \text{ V}$ $T_{AMB} = -25 \text{C to } +75 \text{C}$			-30	-20	dBm	
Power degradation	$P_{IN} = 8.5 \text{ dBm}, V_{SEL} = 0.6 \text{ V},$ $V_{APC} = 2.8 \text{ V}, T_{AMB} = -25 \circ \text{C to } +75$	°C	33			dBm	
Stability and leakage spurious	All combinations of following			No parasitic oscillations when I _{DD} < 2.2 A All spurious < -36 dBm			
Noise power	935 - 960 MHz 925 - 935 MHz RBW = 30 kH.	z			-90 -78	dBm dBm	
Input S11	$V_{APC} = 0.5 V$			-5.2	-5.0	dBm	
Input S11	P _{out} = 34.5dBm			-12	-6.0	dBm	

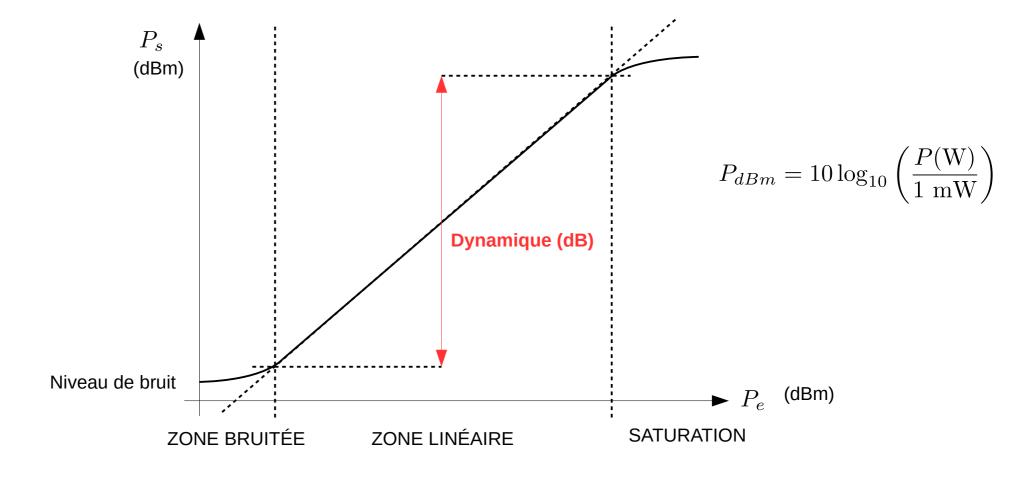
Exemple 2: TDA 1521, Amplificateur audio 2x12W

Operating mode: symmetrical power supply; test circuit as per Fig.12;


$$V_P = \pm 16 \text{ V}; R_L = 8 \Omega; T_{amb} = 25 \circ C; f = 1 \text{ kHz}$$

, L , amb						
Total quiescent current	without R _L	I_{tot}	18	40	70	mA
Output power	THD = 0,5%	Po	10	12	_	W
	THD = 10%	Po	12	15	_	W
Total harmonic						
distortion	P _O = 6 W	THD	_	0,15	0,2	%
Power bandwidth	THD = 0,5%					
	note 1	В		20 to		
				20k		Hz

Influence des non linéarités :


$$v_s = f(\Delta v_e) = f(v_{e0}) + \Delta v_e \frac{f'(v_{e0})}{1!} + (\Delta v_e)^2 \frac{f''(v_{e0})}{2!} + (\Delta v_e)^3 \frac{f'''(v_{e0})}{3!} + \dots$$

 $v_s = Av_e + Bv_e^2 + Cv_e^3 + \dots$

 v_s

Exemple 1: PBL 403 05, Amplificateur GSM Multibande

$$P_{s,max} = 34,7 \text{ dBm}$$

 $P_{bruit} = -90 \text{ dBm } (935-960 \text{ MHz}, \text{ RBW} = 30 \text{ kHz}) \rightarrow P_{bruit} = -80 \text{ dBm } (\text{RBW} = 300 \text{ kHz})$

Dynamique = 114,7 dB

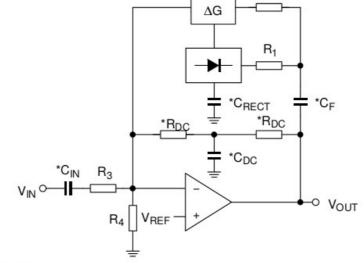
Exemple 2 : TDA 1521, Amplificateur audio 2x12W

2 x 12 W
$$\rightarrow$$
 2 x **45,8 dBm** (sur 8 Ω)
V_{bruit} (RMS) = 70 μV (20 Hz – 20 kHz) \rightarrow P_{bruit} = **-62 dBm**

Dynamique = 107,8 dB

Contrôle automatique de gain

Objectif: Ajuster le gain pour maintenir une tension de sortie moyenne constante


Principe:

- Mesure de l'amplitude moyenne du signal d'entrée (par exemple avec un redresseur à diodes et un filtre passe-bas)
- Utilisation d'un amplificateur dont le gain est contrôlable par une tension continue.

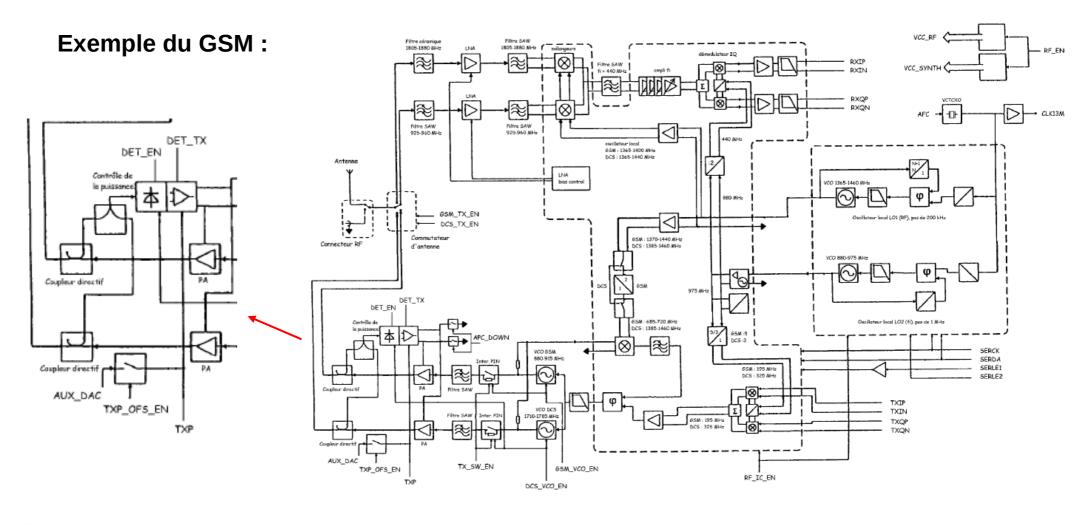
Exemple: NE570

Si V_{IN(avg.)} est multiplié par 2, le gain est divisé par 2

$$\rightarrow$$
 V_{OUT(avg.)} = GAIN x V_{IN(avg.)} = constante

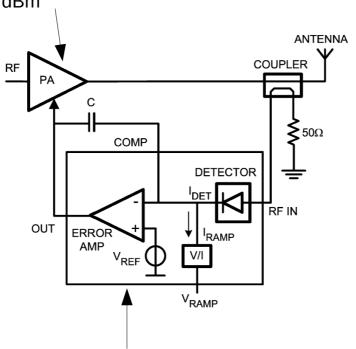
NOTES:

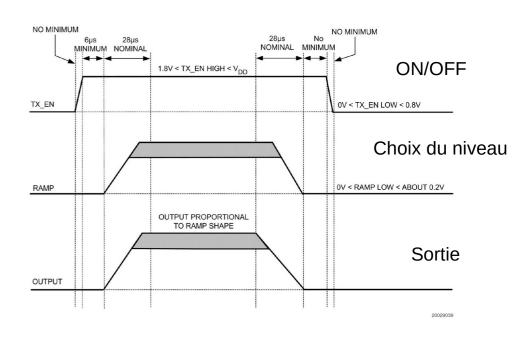
$$GAIN = \left(\frac{R_1 R_2 I_B}{2 R_3 V_{IN}(avg.)}\right) \frac{1}{2}$$


In = 140 uA

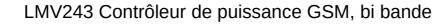
* EXTERNAL COMPONENTS

Contrôle automatique de gain





Contrôle automatique de gain


Exemple du GSM:

PBL 403 05, Amplificateur de puissance GSM multibande contrôlable en tension Tension de contrôle VAPC = 0,5 V à 3,15 V Pout varie de -20 à +34,5 dBm

