TRAVAUX DIRIGÉS DE FRANCAIS DES SCIENCES - PHYSIQUE 6 : Mouvement d'une particule chargée

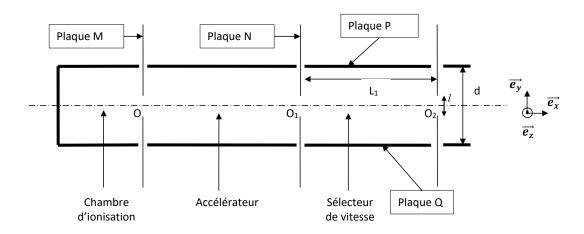
École Centrale Pékin

Année 1

APPLICATION DU COURS

EXERCICE 1: Un électron et un proton sont dans un champ magnétique

On considère un électron et un proton, de même énergie cinétique initiale, soumis à un même champ magnétostatique uniforme, normal à la vitesse initiale. Ils décrivent des trajectoires circulaires. Comparer


- 1. leur vitesse,
- 2. le rayon de leur trajectoire,
- 3. leur période.

S'ENTRAÎNER

EXERCICE 2 : Étude d'un spectromètre de masse

On considère le dispositif ci-dessous constitué :

- d'une chambre d'ionisation, de longueur L, permettant la production d'ions $^{20}_{10}\mathrm{Ne^+}$ et $^{22}_{10}\mathrm{Ne^+}$;
- un accélérateur dans lequel règne un champ électrique uniforme créé par une tension U_0 établie entre les deux plaques M et N.
- \bullet d'un sélecteur de vitesse (de largeur $d=5\mathrm{cm}$ et longueur $L_1)$ dans lequel règne :
 - un champ électrique uniforme $\overrightarrow{E}_1 = E_1 \overrightarrow{e_y}$ créé par une tension U1 établie entre les deux plaques Q et P;
 - un champ magnétique uniforme $\overrightarrow{B} = B_1 \overrightarrow{e_z}$ avec $B_1 = 0, 1$ T.

1. Chambre d'ionisation : Calculer les masses des ions $^{20}_{10}\text{Ne}^+$ et $^{22}_{10}\text{Ne}^+$ notées respectivement m_1 et m_2 .

<u>Données</u>: masse de l'électron $m_e = 9,110 \times 10^{-31} \text{ kg}$; masse du proton $m_p = 1,672 \times 10^{-27} \text{ kg}$; masse du neutron $m_n = 1,674 \times 10^{27} \text{ kg}$

2. Accélérateur:

- a) Quelle est la nature du mouvement des ions?
- b) Déterminer le signe de la tension U_0 .
- c) Déterminer la vitesse v_1 des ions ${}^{20}_{10}$ Ne⁺ en O_1 en supposant que leur vitesse est nulle en O.
- d) Exprimer la vitesse v_2 des ions $^{22}_{10}\text{Ne}^+$ en O_1 (en supposant que leur vitesse est nulle en O) en fonction des masses et de v_1 .
- e) Calculer v_1 et v_2 avec la charge élémentaire $e = 1, 6 \times 10^{-19} \text{ C}$ et $U_0 = 1200 \text{ V}$.
- 3. Sélecteur de vitesse : On règle U_1 de sorte que le mouvement des ions ${}^{20}_{10}\text{Ne}^+$ soit rectiligne uniforme de trajectoire O_1O_2 .
 - a) Déterminer la valeur de U_1 .
 - b) Par une approche qualitative, déterminer dans quelle direction seront déviés les ions $^{22}_{10}$ Ne⁺.
 - c) Il eiste un trou de taille l à la fin du sélecteur de vitesse, trouver une relation entre L_1 et l pour que les ions $^{22}_{10}\mathrm{Ne^+}$ ne puissent pas sortir (c'est-à-dire ne puissent pas passer le trou). On suppose ici que la composante de la vitesse v_x selon $\overrightarrow{e_x}$ ne change pas et est très grande devant la composante v_y selon $\overrightarrow{e_y}$.

EXERCICE 3 : Étude d'un spectromètre de masse

Un cyclotron est un accélérateur de particules qui utilise l'action combinée d'un champ électrique \overrightarrow{E} et d'un champ magnétique \overrightarrow{B} .

Le cyclotron est constitué de deux demi-cylindres horizontaux de rayon R très légèrement écartés et creux, les "Dees", au sein desquels règne un champ magnétique \overrightarrow{B} uniforme et constant d'intensité B=1,67 T (figure 1). À l'intérieur des Dees, il règne un vide poussé. Entre ces deux Dees une tension haute fréquence de valeur maximale U=100 kV crée un champ \overrightarrow{E} perpendiculaire aux faces internes des Dees (parallèle à la direction Ox sur la figure 2).

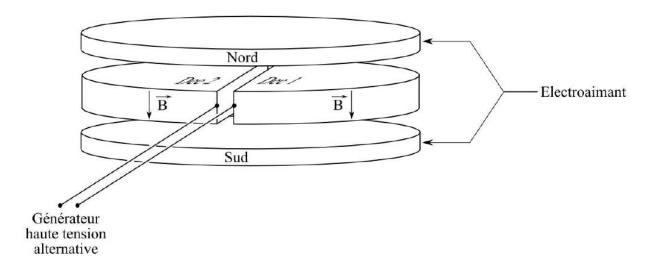
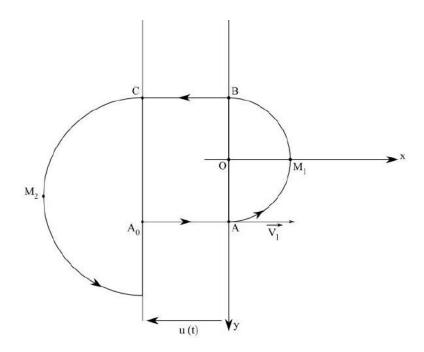



FIGURE 1 – Vue générale du cyclotron

 ${f Figure~2}$ – Vue de dessus du cyclotron

Des protons de masse $m_p = 1,67 \times 10^{-27}$ kg et de charge $e = 1,6 \times 10^{-19}$ C, animés d'une vitesse horizontale négligeable, sont injectés au point A_0 de l'espace séparant les deux Dees.

Dans tout le problème, la force de LORENTZ sera la seule force prise en compte.

- 1. Étude du mouvement dans les *Dees*: On étudie le mouvement d'un proton qui pénètre pour la première fois dans le *Dee* 1 en A avec la vitesse $\overrightarrow{v_1}$, de valeur v_1 .
 - a) Pourquoi ne considère-t-on que la force de LORENTZ dans ce problème?
 - b) Montrer que le mouvement du proton dans un Dee est uniforme.
 - c) Représenter sur le schéma de la figure 2 les vecteurs champ magnétique dans chacun des Dees, les vecteurs vitesse et force de LORENTZ aux points M_1 et M_2 .
 - d) Par application de la relation fondamentale de la dynamique, établir le système d'équations différentielles couplées auxquelles satisfont les composantes v_x et v_y de son vecteur vitesse $\overrightarrow{v}(t)$. On introduira la pulsation cyclotron $\omega_c = \frac{eB}{m}$
 - e) Montrer que la trajectoire du proton dans le *Dee* 1 est un cercle de rayon $R_1 = \frac{v_1}{\omega_c}$.

Ce résultat se généralise et la trajectoire lors de la $n^{\text{ième}}$ traversée d'un Dee sera circulaire uniforme de rayon $R_n = \frac{v_n}{\omega_c}$.

- f) Exprimer, en fonction de R_n , la distance d parcourue dans un Dee lors du $n^{\text{ième}}$ demi-tour.
- g) Montrer que la durée Δt de parcours de la trajectoire dans un Dee est indépendante de la vitesse du proton et donner son expression en fonction de m, e et B.
- 2. Étude du mouvement entre les *Dees*: Entre les *Dees*, qui sont très faiblement écartés, le proton décrit une trajectoire rectiligne et est accéléré.
 - a) Préciser la direction et le sens que doit avoir le champ électrique \overrightarrow{E} entre les Dees quand le proton décrit A_0A puis BC. Dans chaque cas, quel doit être le signe de la tension u entre les Dees pour que les protons soient toujours accélérés quand ils passent entre les Dees?
 - b) Le schéma de la figure 3 fournit le graphe de la tension u(t).

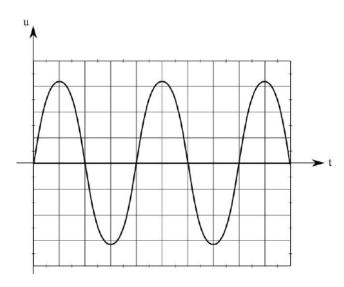


Figure 3 – Évolution de la tension u en fonction du temps

Noter sur ce graphe:

- le moment où le proton passe de A_0 à A, puis lorsqu'il passe de B à C;
- la durée Δt de parcours de la trajectoire dans chacun des *Dees*.
- c) Donner la relation entre la période T de la tension u(t) et la durée Δt . En déduire l'expression de la fréquence f de u(t) en fonction de m, e et B.

Pour aller plus loin

Exercice 4: Mouvement avec frottements

On considère une particule chargée positivement (q), de masse m, en mouvement par rapport à un référentiel \mathcal{R} dans un champ magnétique uniforme et constant $\vec{B} = B_0 \vec{e}_z$. La particule se situe initialement en O, avec une vitesse $\vec{v}_0 = v_{0,x}\vec{e}_x + v_{0,y}\vec{e}_y$. Elle est en outre soumise à une force de frottement de la forme $\vec{F}=-kv^2\frac{\vec{v}}{v}$ où k est une constante positive. Montrer que la norme de la vitesse de la particule décroît au cours du temps.

Atteint-on la vitesse nulle au bout d'un temps fini?