FEUILLE DE TD Nº 2

Ensembles, applications et groupes.

28 SEPTEMBRE 2020

Exercice 1. Soient E et F deux ensembles. Soient A et C deux parties de E et B et D deux parties de F. Démontrer que

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Démontrons le résultat par double-inclusion.

 $> \text{Soit } (x,y) \in (A \times B) \cap (C \times D). \text{ D'une part, } (x,y) \in A \times B, \text{ donc } x \in A \text{ et } y \in B. \text{ D'autre part, } (x,y) \in C \times D, \text{ donc } x \in C \text{ et } y \in D. \text{ Finalement, } x \in A \cap C \text{ et } y \in B \cap D. \text{ Donc } (x,y) \in (A \cap C) \times (B \cap D). \text{ D'où } (A \times B) \cap (C \times D) \subset (A \cap C) \times (B \cap D).$

 $\begin{subarray}{l} \triangleleft R\'{e}ciproquement, soit $(x,y) \in (A \cap C) \times (B \cap D)$. Alors $x \in A \cap C$ et $y \in B \cap D$. D'une part, $x \in A$ et $y \in B$, donc $(x,y) \in A \times B$. D'autre part, $x \in C$ et $y \in D$, donc $(x,y) \in C \times D$. Finalement, $(x,y) \in (A \times B) \cap (C \times D)$. D'où $(A \cap C) \times (B \cap D) \subset (A \times B) \cap (C \times D)$. }$

D'où le résultat.

Exercice 2. Démontrer que la relation $f(x) = x + \sqrt{x^2 + 1}$ définit une application f de \mathbb{R} dans \mathbb{R}_+^* .

Par la relation f, tout élément de \mathbb{R} possède une et une seule image. Vérifions que cette image appartient à \mathbb{R}_+ .

Soit $x \in \mathbb{R}$.

On a $x^2 + 1 > x^2$. La fonction $\sqrt{\cdot}$ étant strictement croissante sur \mathbb{R}_+ , on a alors $\sqrt{x^2 + 1} > \sqrt{x^2} = |x|$.

Donc $x + \sqrt{x^2 + 1} > x + |x|$.

Or $|x| = \max(x, -x) \ge -x$.

Donc $x + \sqrt{x^2 + 1} > x + |x| > 0$, soit $x + \sqrt{x^2 + 1} > 0$.

Donc f(x) > 0 et f est à valeurs dans \mathbb{R}_+ .

Donc f définit bien une application de \mathbb{R} dans \mathbb{R}_+^* .

Exercice 3.

- 1. Écrire la fonction $f:]1, +\infty[\longrightarrow \mathbb{R}$ définie par $f(x) = \frac{1}{\sqrt{x-1}}$ comme la composée de trois fonctions.
- 2. Soient f et g des applications de \mathbb{N} dans \mathbb{N} définies pour tout $n \in \mathbb{N}$ par

$$f(n) = 2n$$
 et $g(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair,} \\ 0 & \text{sinon} \end{cases}$

Justifier que les applications f et g sont bien définies puis calculer $g \circ f$ et $f \circ g$. A-t-on $g \circ f = f \circ g$?

- 3. Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Soit A une partie de E. Montrer que $(g \circ f)(A) = g(f(A))$.
- 1. Posons $g_1:]1, +\infty[\longrightarrow \mathbb{R}_+^* ; x \longmapsto x-1, g_2: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^* ; x \longmapsto \sqrt{x} \text{ et } g_3: \mathbb{R}_+^* \longrightarrow \mathbb{R} ; x \longmapsto \frac{1}{x}$. Ces applications sont bien définies et $h = g_3 \circ g_2 \circ g_1$.

2. Pour tout $n \in \mathbb{N}$, on a $2n \in \mathbb{N}$ donc f est bien à valeurs dans \mathbb{N} et tout élément de \mathbb{N} possède une unique image par fqui est dans \mathbb{N} . L'application f est donc bien définie.

Soit $n \in \mathbb{N}$. Si n est pair alors il existe $p \in \mathbb{N}$ tel que n = 2p, donc $g(n) = \frac{2p}{2} = p \in \mathbb{N}$. Si n est impair alors $g(n)=0\in\mathbb{N}$. Donc g est bien à valeurs dans \mathbb{N} et tout élément de \mathbb{N} possède une unique image par g qui est dans \mathbb{N} . L'application g est donc bien définie

Soit $n \in \mathbb{N}$.

On a $(g \circ f)(n) = g(f(n)) = g(2n)$ et comme 2n est pair, $g(2n) = \frac{2n}{2} = n$. Donc $g \circ f(n) = n$ et $g \circ f = \mathrm{id}_{\mathbb{N}}$.

Pour calculer $f\circ g,$ distinguons les cas.

Si
$$n$$
 est pair, alors $(f \circ g)(n) = f(g(n)) = f\left(\frac{n}{2}\right) = 2 \times \frac{n}{2} = n$.

Si n est impair, alors $(f \circ g)(n) = f(g(n)) = f(0) = 2 \times 0 = 0$.

Ainsi, on a $(g \circ f)(1) = 1$ et $(f \circ g)(1) = 0$, et on en déduit donc que $g \circ f \neq f \circ g$.

3. Montrons le résultat par double inclusion.

 \triangleright Soit $y \in (g \circ f)(A)$. Alors il existe $x \in A$ tel que $y = (g \circ f)(x)$. Donc, par définition de la composition, y = g(f(x)). Posons z = f(x). Alors y = g(z) et $z = f(x) \in f(A)$ car $x \in A$. Donc $y \in g(f(A))$. D'où, $(g \circ f)(A) \subset g(f(A))$.

 \triangleleft Réciproquement, soit $y \in g(f(A))$. Par définition, il existe $z \in f(A)$ tel que y = g(z). Comme $z \in f(A)$, il existe $x \in A$ tel que z = f(x). Donc $y = g(f(x)) = (g \circ f)(x) \in (g \circ f)(A)$. D'où $g(f(A)) \subset (g \circ f)(A)$.

Exercice 4. Déterminer l'image directe f(I) dans les cas suivants :

- 1. $f(x) = x \exp(x)$ et \mathbb{R}_{-} ,
- 2. $f(x) = 1 + x^2 + x^3$ et $I = \left[-\frac{4}{5}, \frac{1}{6} \right]$,
- 3. $f(x) = x^n \ln(x)$ où $n \in \mathbb{N}^*$ et $I = \mathbb{R}_+^*$,
- 4. $f(x) = \sin\left(\frac{\pi}{x}\right)$ et I =]0, 1],
- 5. $f(z) = z^2$ et $I = \mathbb{C}$,
- 6. f(x) = x + E(x) où E(x) désigne la partie entière de x et $I = \mathbb{R}_+$,
- 7. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$; $(x,y) \longmapsto (x+y,xy)$ et $I = \mathbb{R}^2$.

Pour les trois premières questions, faire un tableau de variations.

- 1. $f(I) = \left[-\frac{1}{e}, 0 \right]$.
- 2. $f(I) = \left[1, \frac{31}{27}\right]$.
- 3. $f(I) = \left[-\frac{1}{ne}, +\infty \right]$.
- 4. Posons $g: \mathbb{R}_+^* \longrightarrow \mathbb{R}$; $x \longmapsto \frac{\pi}{x}$. On a $g(]0,1]) = [\pi, +\infty[$. On a donc $f(I) = (\sin \circ g)(I) = \sin(g(]0,1])) = \sin([\pi, +\infty[) = [-1, 1].$

5. $f(\mathbb{C}) = \mathbb{C}$.

On a bien sûr $f(\mathbb{C}) \subset \mathbb{C}$ car f est à valeurs dans \mathbb{C} . Montrons l'inclusion réciproque.

Soit $z \in \mathbb{C}$. Il existe $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ tels que $z = re^{i\theta}$. Posons $z_0 = \frac{r}{2}e^{i\frac{\theta}{2}}$. Alors $z = z_0^2 = f(z_0)$ et $z_0 \in \mathbb{C}$. Donc $z \in f(\mathbb{C})$. Donc $\mathbb{C} \subset f(\mathbb{C})$.

D'où $f(\mathbb{C}) = \mathbb{C}$.

6. Plus difficile.

Montrons que $f(\mathbb{R}_+) = \bigcup_{n \in \mathbb{N}} [2n, 2n + 1[.$

Procédons par double inclusion.

hicksim Soit $y \in f(\mathbb{R}_+)$. Alors $\mathrm{E}(y) \leq y < \mathrm{E}(y) + 1$, donc $2\mathrm{E}(y) \leq y + \mathrm{E}(y) < 2\mathrm{E}(y) + 1$. Comme $\mathrm{E}(y) \in \mathbb{N}$, on a $f(y) = y + \mathcal{E}(y) \in [2\mathcal{E}(y), 2\mathcal{E}(y) + 1[\subset \bigcup_{n \in \mathbb{N}} [2n, 2n + 1[.$

 \triangleleft Réciproquement, soit $y\in \bigcup_{n\in\mathbb{N}}\left[2n,2n+1\right[.$

Il existe $n_0 \in \mathbb{N}$ tel que $y \in [2n_0, 2n_0 + 1[$.

Posons $x = y - n_0$. Comme $y \ge 2n_0 \ge n_0$, x est un élément de \mathbb{R}_+ . Montrons que y = f(x).

On a $2n_0 \le y < 2n_0 + 1$, donc $n_0 \le y - n_0 < n_0 + 1$, soit $n_0 \le x < n_0 + 1$.

De ces inégalités, on en déduit que $n_0 = E(x)$.

De $x = y - n_0$, on obtient $y = x + n_0 = x + E(x)$.

Donc $y = f(x) \in f(\mathbb{R}_+)$.

D'où $\bigcup_{n\in\mathbb{N}} [2n, 2n+1] \subset f(\mathbb{R}_+).$

Donc $f(\mathbb{R}_+) = \bigcup_{n \in \mathbb{N}} [2n, 2n + 1[.$

7. Plus difficile.

Soit $(s,p) \in f(\mathbb{R}^2)$. Alors il existe $(x,y) \in \mathbb{R}^2$ tel que (s,p) = f(x,y) = (x+y,xy). On a donc s=x+y et p=xy. Le polynôme X^2-sX+p admet donc deux racines réelles, x et y. On en déduit que le discriminant de ce polynôme est strictement positif, c'est-à-dire $s^2-4p>0$.

Donc
$$f(\mathbb{R}^2) \subset \{(s,p) \in \mathbb{R}^2 \mid s^2 - 4p > 0\}.$$

Réciproquement, soit $(s,p) \in \mathbb{R}^2$ tel que $s^2 - 4p > 0$. Alors le polynôme $X^2 - sX + p$ a un discriminant strictement positif et il admet donc deux racines réelles x et y. On a alors x + y = s et xy = p. Donc $(s,p) = f(x,y) \in f(\mathbb{R}^2)$. Ainsi, $f(\mathbb{R}^2) = \{(s,p) \in \mathbb{R}^2 \mid s^2 - 4p > 0\}$.

Exercice 5. Soit (S_n, \circ) le groupe des permutations de [1, n]. On pose $\tau = (1, 2)$ et $\sigma = (1, 2, \dots, n)$.

- 1. Pour $k \in [0, n-2]$, calculer $\sigma^k \tau \sigma^{-k}$.
- 2. Montrer que toute transposition (i, j) peut s'écrire comme un produit de transposition de la forme (i, i + 1).
- 3. En déduire le sous-groupe de S_n engendré par σ et $\tau.$
- 1. Par récurrence $\sigma^k \tau \sigma^{-1} = (k+1,k+2)$ pour tout $k \in [0,n-2]$.
- 2. Si j+1 < i, (i,j) = (j,j+1)(i,j+1)(j,j+1) et on recommence avec (i,j+1) si j+2 < I et sinon, on a fini.
- 3. Le cours nous dit que S_n est engendré par les transpositions et les questions 1 et 2 montrent que le groupe engendré par τ et σ contient toutes les permutations. On en déduit que le groupe engendré par τ et σ vaut exactement S_n .

Exercice 6. Les ensembles suivants sont-ils des groupes?

- 1. (\mathbb{R}, \perp) , avec $x \perp y = x + y 1$;
- 2. (\mathbb{R}, \top) , avec $x \top y = x + xy + y$;
- 3. (\mathbb{C}, Δ) , avec $z \Delta z' = xx' + i(xy' + x'y)$.

1/ oui, on commence par montrer que la loi est commutative et associative puis que l'élément neutre est 1. Le symétrique de x est x + 2; 2/Non : Chercher le neutre puis symétrique de -1; 3/Non : Chercher le symétrique d'un imaginaire pur.

Exercice 7. Soit H un sous-groupe strict de G. Le complémentaire de H est-il un sous-groupe?

Par définition, $e \in H$, l'élément neutre du groupe, donc $e \notin \overline{H}$ et \overline{H} n'est pas un sous-groupe.

Exercice 8. Soit G un ensemble muni d'une loi de composition interne . associative, qui possède un élément neutre à droite e (ie pour tout x de G, x.e = x) et tel que tout élément x possède un inverse à droite x' (ie xx' = e). Montrer que G est un groupe.

Soit $x \in G$, d'inverse à droite x'. Soit y inverse à droite de x' :

$$x'y = e$$
 et $xx'y = ey \Rightarrow x.e = e.y = x$

et donc x'ey = e soit x'x = e. Il reste à vérifier que e est bien un élément neutre à gauche : ex = xx'x = xe = x.