FEUILLE DE TD Nº 3

Images réciproques, injections, surjections et groupes.

11 OCTOBRE 2020

Exercice 1.

1. Déterminer l'image réciproque $f^{-1}(I)$ dans les cas suivants :

(a)
$$f(x) = \sin(x)$$
 et $I = \left\{ \frac{\sqrt{2}}{2} \right\}$.

(b)
$$f(x) = \cos(x)$$
 et $I = [\frac{1}{2}, +\infty[$.

- 2. Déterminer $f\left(f^{-1}(I)\right)$ avec $f(x) = \sin(x)$ et $I = \begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}$.
- 3. Déterminer $f^{-1}(f(I))$ dans les cas suivants :

(a)
$$f(x) = \cos(x)$$
 et $I = [0, \frac{\pi}{3}]$,

(b)
$$f(x) = x^2 - 2x + 3$$
 et $I = [2, 3]$.

Exercice 2. Les applications suivantes sont-elles injectives? Surjectives?

1.
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R} ; (x,y) \longmapsto 2y,$$

2.
$$f_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 ; (x,y) \longmapsto (1, x-y, y),$$

3.
$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
; $(x,y) \longmapsto (x+y,x-y)$,

4.
$$f_4: \mathbb{N} \longrightarrow \mathbb{N} ; n \longmapsto n+1,$$

5.
$$f_5: \mathbb{Z} \longrightarrow \mathbb{Z} ; n \longmapsto n+1,$$

6.
$$f_6: \mathbb{N} \longrightarrow \mathbb{Z}$$
; $n \longmapsto \begin{cases} \frac{n}{2} \text{ si } n \text{ est pair,} \\ -\frac{n+1}{2} \text{ sinon,} \end{cases}$

7.
$$f_7: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}} ; (u_0, u_1, u_2, \ldots) \longmapsto (0, u_0, u_1, u_2, \ldots),$$

- 8. $f_8: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}} ; (u_0, u_1, u_2, \ldots) \longmapsto (u_1, u_2, u_3, \ldots),$
- 9. $f_9: \mathbb{N}^2 \longrightarrow \mathbb{N}^*$; $(n,p) \longmapsto 2^n(2p+1)$.

Exercice 3. Soient E et F deux ensembles. Soit $f: E \longrightarrow F$ une application.

- 1. Soient A une partie de E et B une partie de F. Démontrer que $f(A \cap f^{-1}(B)) = f(A) \cap B$.
- 2. Démontrer que f est injective si et seulement si pour toute partie A de E, $A = f^{-1}(f(A))$.
- 3. Démontrer que f est surjective si et seulement si pour toute partie B de F, $B = f(f^{-1}(B))$.

Exercice 4. Soient E un ensemble et $f: E \longrightarrow E$ une application telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice 5. Soient E et I deux ensembles. Soit $f: E \longrightarrow I$ une application surjective. On pose, pour tout $i \in I$, $A_i = f^{-1}(\{i\})$. Montrer que la famille $(A_i)_{i \in I}$ forme une partition de E.

Exercice 6. Soit H un sous-groupe strict de G. Déterminer le sous-groupe engendré par le complémentaire de H.

Exercice 7.

- 1. Soit G un groupe abélien, $x \in G$ un élément d'ordre p et $y \in G$ un élément d'ordre q. Montrer que xy est d'ordre au plus pq.
- 2. xy est-il nécessairement d'ordre pq? (donnez des exemples)
- 3. Si $G = \text{Bij}(\mathbb{Z} \times \mathbb{Z})$, montrer que $f : (m, n) \mapsto (-n, m)$ et $g : (m, n) \mapsto (n, -m n)$ sont des éléments de G d'ordre respectif 4 et 3. Quel est l'ordre de $f \circ g$?

Exercice 8. On considère $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}; \ a, b \in \mathbb{Z}\}.$

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +)$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 2. Montrer que $\mathbb{Z}[\sqrt{2}] \setminus \{0\}$ est stable par la multiplication, possède un élément neutre, mais n'est pas un groupe.
- 3. On note $N(a+b\sqrt{2})=a^2-2b^2$. Montrer que, pour tous x,y de $\mathbb{Z}[\sqrt{2}]$, on a N(xy)=N(x)N(y).
- 4. En déduire que les éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ sont ceux s'écrivant $a+b\sqrt{2}$ avec $a^2-2b^2=\pm 1$.

Indications

Exercice 1

Pour l'image réciproque, revenir à la définition de $f^{-1}(A)$ et résoudre inéquation ou équation.

Pour l'image directe, on peut s'aider de tableaux de variations.

On pourra utiliser que $f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f(A_i)$.

Exercice 2

Utiliser les caractérisations de l'injectivité et la surjectivité de $f: E \longrightarrow F$.

- pour montrer que f est injective, démarrer par : soient $u \in E$ et $v \in E$ tels que f(u) = f(v). Puis montrer que u = v.
- pour montrer que f n'est pas injective, trouver deux éléments de E $u \neq v$ tels que f(u) = f(v).
- pour montrer que f est surjective, démarrer par : soit $y \in F$. Puis chercher un élément $x \in E$ tel que y = f(x).
- \bullet pour montrer que f n'est pas surjective, trouver un élément y de E qui n'admet pas d'antécédent dans E par f.
- 6. On pourra remarque que $f_6(n)$ est positif si et seulement si n est pair, et est négatif si et seulement si n est impair.
- 9. Pour la surjectivité, on pourra utiliser la décomposition en facteurs premiers d'un nombre entier.

Exercice 3

Raisonner par double inclusion pour démontrer les égalités d'ensembles.

Utiliser notamment:

$$y \in f(C) \Leftrightarrow \exists x \in C, y = f(x)$$

et $x \in f^{-1}(D) \Leftrightarrow f(x) \in D$.

2. Pour le sens réciproque, supposer que f(u) = f(v) et prendre $A = \{v\}$.

Exercice 4

Raisonner par double implication.

Pour montrer l'injectivité, on suppose que f(u) = f(v) avec $(u, v) \in E^2$. Utiliser la surjectivité pour justifier l'existence de $(u_1, v_1) \in E^2$ tel que $u = f(u_1)$ et $v = f(v_1)$. On en déduit que $f(f(u_1)) = f(f(v_1))$. Il reste à faire apparaître la relation vérifiée par f et conclure...

Exercice 5

Vérifier les trois points de la définition d'une partition.