FEUILLE DE TD Nº 4

Bijections, relations d'équivalence et groupes

23 OCTOBRE 2020

Exercice 1.

1. Soit $f_1: \mathbb{R} \longrightarrow \mathbb{R}$; $x \longmapsto \frac{x}{1+x^2}$.

- (a) Déterminer l'image de f_1 .
- (b) La fonction f_1 est-elle bijective de \mathbb{R} sur \mathbb{R} ? La fonction f_1 est-elle bijective de \mathbb{R} sur son image?
- (c) Montrer que f_1 induit une bijection de [-1,1] sur un ensemble à déterminer. Préciser la bijection réciproque.
- 2. Soit $f_2: z \longmapsto \frac{z+i}{z-i}$.
 - (a) Déterminer l'ensemble de définition de f_2 .
 - (b) Montrer que f_2 réalise une bijection de $D = \{z \in \mathbb{C} \mid |z| < 1\}$ sur $P = \{z \in \mathbb{C} \mid \text{Re}(z) < 0\}$. Préciser la bijection réciproque.

Exercice 2. Soient E, F, G trois ensembles. On considère trois applications $f: E \longrightarrow F, g: F \longrightarrow G$ et $h: G \longrightarrow E$.

- 1. Montrer que si $h \circ g \circ f$ est injective et que $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives alors f, g et h sont bijectives.
- 2. On suppose dans cette question que G = E. Justifier que $f \circ g \circ f$ est bien définie puis montrer que si $f \circ g \circ f$ est bijective alors f et g sont bijectives.

Exercice 3. Soient E et F deux ensembles. On considère une application $f: E \longrightarrow F$.

- 1. Montrer que f est injective si et seulement si pour tout $(A, B) \in \mathcal{P}(E)^2$, $f(A \cap B) = f(A) \cap f(B)$.
- 2. Montrer que f est bijective si et seulement si pour tout $A \in \mathcal{P}(E)$, $f(\mathbb{C}_E A) = \mathbb{C}_F f(A)$.

Exercice 4. On définit une relation binaire \mathcal{R} sur \mathbb{R} par : $x\mathcal{R}y$ si $xe^y = ye^x$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence d'un élément x de $\mathbb R$ puis le nombre d'éléments de cette classe.

Exercice 5. Soit G un groupe fini. Si $a \in G$, on pose $\Phi_a : x \in G \mapsto axa^{-1} \in G$.

- 1. Vérifier que, si $a \in G$, Φ_a est un morphisme bijectif (ie automorphisme) de G, et que $I = \{\Phi_a \mid a \in G\}$ est un sous-groupe du groupe des automorphismes de G.
- 2. On suppose que I est un groupe cyclique. Montrer que G est commutatif.

Exercice 6. Soit ϕ un automorphisme de S_n qui transforme une transposition en une transposition. On note t_i la transposition $(1 \ i)$.

- 1. Montrez que deux transpositions distinctes commutent ssi elles ont des supports disjoints.
- 2. Montrer qu'il existe trois éléments a_1 , a_2 et a_3 tels que $\phi(t_2)=(a_1\ a_2)$ et $\phi(t_3)=(a_1\ a_3)$.
- 3. Montrer que pour tout i > 3, il existe a_i tel que $\phi(t_i) = (a_1 \ a_i)$.
- 4. Montrer que l'application s qui à i associe a_i est bijective.
- 5. On appelle automorphisme intérieur h_s associé à s l'application définie par $h_s:S_n\to S_n\ \sigma\mapsto s\sigma s^{-1}.$
 - (a) Montrer que pour tout $i, j \ge 2, \phi((i \ j)) = h_s((i \ j)).$
 - (b) En déduire que $\phi = h_s$.

Remarque : on vérifie que si $\sigma=(b_1 \cdots b_r)$, alors $s\sigma s^{-1}=(s(b_1) \cdots s(b_r))$.

Indications

Exercice 1

- 1. On pourra s'aider d'un tableau de variations.
- 2. Vérifier que $f_2(D) \subset P$. Résoudre $f_3(z) = y$ et vérifier que le z obtenu appartient bien à D.

Exercice 2

Utiliser les propriétés du cours :

Si $g \circ f$ est injective (resp. surjective) alors f est injective (resp. g est surjective).

On pourra introduire f^{-1} et g^{-1} (après avoir justifié la bijectivité) pour obtenir le résultat sur h.

Exercice 3

- 1. Raisonner par double implication. Pour l'implication réciproque, on pourra choisir $A = \{u\}$ et $B = \{v\}$.
- 2. On peut par exemple:
 - a) Montrer que f est injective si et seulement si pour toute partie A de E, $f(\complement A) \subset \complement f(A)$. Pour le sens réciproque, on pourrait notamment supposer f(x) = f(y) avec $x \neq y$ et appliquer à $A = \{x\}$.
 - b) Montrer que f est surjective si et seulement si pour toute partie A de $E \ \mathfrak{C}f(A) \subset f(\mathfrak{C}A)$. Pour la réciproque, prendre A=E.

On peut aussi raisonner directement par double implication.

Exercice 4

- 1. Revenir à la définition.
- 2. On pourra étudier la fonction $t \mapsto te^{-t}$.