Corrigé du TD nº 8

Équations différentielles

17 NOVEMBRE 2020

Exercice 1. On s'intéresse au problème de Cauchy

$$\begin{cases} y' = \frac{1}{1+ty} \\ y(0) = 0. \end{cases}$$

- 1. Justifier que ce problème de Cauchy admet une unique solution maximale φ_m .
- 2. Montrer que φ_m est impaire.
- 3. Montrer que φ_m est strictement croissante.
- 4. Montrer que φ_m est une solution définie sur tout \mathbb{R} .
- 5. Déterminer les limites en l'infini de φ_m . En déduire que φ_m est bijective de $\mathbb R$ sur son image, à préciser. On note ψ la bijection réciproque de l'application φ_m .
- 6. Exprimer ψ à l'aide d'une intégrale en formant une équation différentielle vérifiée par cette fonction.
- 1. Il s'agit d'une équation différentielle non linéaire du premier ordre.

Posons $J = \{(t,y) \in \mathbb{R}^2 \mid 1+ty \neq 0\}$, ouvert de \mathbb{R}^2 . L'application $f: J \longrightarrow \mathbb{R}$; $(t,y) \longmapsto \frac{1}{1+ty}$ est de classe \mathcal{C}^1 . D'après le théorème de Cauchy-Lipschitz, il existe donc une unique solution maximale φ_m définie sur un intervalle ouvert I =]a, b[contenant 0.

2. Posons, pour tout $t \in]-b, -a[, \psi(t) = -\varphi(-t)$. Alors ψ est bien définie, dérivable car φ l'est, et pour tout $t \in]-b, -a[$

$$\psi'(t) = \varphi'(-t) = \frac{1}{1 - t\varphi_m(-t)} = \frac{1}{1 + t\varphi_m(t)}.$$

De plus, $\psi(0) = -\varphi(-0) = 0$. Donc ψ est solution du problème de Cauchy

$$\begin{cases} y' = \frac{1}{1+ty} \\ y(0) = 0. \end{cases}$$

Or φ est LA solution maximale de ce problème de Cauchy, donc ψ est une restriction de φ et $]-b,-a[\subset]a,b[$. On en déduit donc que a=-b et $\varphi=\psi$ sur l'intervalle] -b,b[.

- Donc φ est impaire et I =]-b, b[.

 3. Pour tout $t \in]a, b[$, $\varphi'_m(t) = \frac{1}{1 + t\varphi_m(t)} \neq 0$ donc, φ_m étant de classe \mathcal{C}^1 , φ'_m est continue et ne s'annule pas, donc garde un signe constant. Or $\varphi'_m(0) = \frac{1}{1 + 0\varphi_m(0)} = 1$. Donc φ'_m est strictement positive sur I et φ_m est donc strictement croissante sur \mathbb{R} .
- 4. Supposons par l'absurde que $b < +\infty$.

Pour tout $t \in [0, b[, \varphi_m$ étant croissante et nulle en $0, \varphi_m$ est positive sur l'intervalle [0, b[.

Donc pour tout $t \in [0, b[, t\varphi(t) \ge 0 \text{ et}$

$$\varphi'_m(t) = \frac{1}{1 + t\varphi_m(t)} \le 1.$$

Alors, pour tout $t \in [0, b[$,

$$\varphi_m(t) = \int_0^t \varphi_m'(s) \mathrm{d}s \le \int_0^t 1 \mathrm{d}s \le t \le b.$$

Donc φ_m est majorée par b sur [0,b[et strictement croissante, donc φ_m admet une limite ℓ finie en b. Comme $\varphi_m(0)=0$ et par croissance de φ_m , on a $\ell\in\mathbb{R}_+$. Par positivité de b et ℓ , on en déduit que $1+b\ell\neq 0$ et donc $(b,\ell)\in J$. D'après le théorème des bouts, φ_m est donc prolongeable en b et n'est donc pas maximale, ce qui est absurde. Donc $b = +\infty$ et $I =]-b, b [= \mathbb{R}$. Donc φ_m est une solution définie sur tout \mathbb{R}

5. φ_m étant strictement croissante, elle admet une limite $\ell \in \overline{\mathbb{R}}$ et $\ell > 0$ car $\varphi_m(0) = 0$.

Supposons par l'absurde que $\ell < +\infty$.

Pour tout
$$t \in \mathbb{R}_+$$
, $\varphi_m(t) = \int_0^t \varphi_m'(s) ds = \int_0^t \frac{1}{1 + s\varphi_m(s)} ds$.

Or $\varphi_m(t)$ tend vers ℓ lorsque t tend vers $+\infty$. Donc

$$\frac{1}{1+t\varphi_m(t)} \underset{t \to +\infty}{\sim} \frac{1}{t\ell}.$$

Or $t \mapsto \frac{1}{t\ell}$ est non intégrable au voisinage de $+\infty$. Donc par comparaison de fonctions positives, $t \mapsto \frac{1}{1 + t\varphi_m(t)}$ est positive et non intégrable au voisinage de $+\infty$.

est positive et non intégrable au voisinage de $+\infty$. Donc $\varphi(t)=\int_0^t \frac{1}{1+s\varphi_m(s)}\mathrm{d}s$ tend vers $+\infty$ lorsque t tend vers $+\infty$, ce qui est absurde.

Donc φ_m tend vers $+\infty$ en $+\infty$ et par imparité, φ_m tend vers $-\infty$ en $-\infty$.

La fonction φ_m étant strictement croissante sur \mathbb{R} , elle induit donc une bijection de \mathbb{R} sur $\varphi_m(\mathbb{R}) = \mathbb{R}$ d'après les calculs de limites en l'infini.

6. φ_m étant bijective, de classe \mathcal{C}^1 et de dérivée qui ne s'annule pas, sa bijection réciproque ψ est de classe \mathcal{C}^1 et pour tout $t \in \mathbb{R}$.

$$\psi'(t) = \frac{1}{\varphi'_m(\psi(t))} = 1 + t\psi(t).$$

 ψ est donc solution de l'équation différentielle linéaire du premier ordre y'=ty+1.

L'ensemble des solutions de l'équation homogène est

$$\mathcal{S}_h = \left\{ \mathbb{R} \longrightarrow \mathbb{R} \; ; \; t \longmapsto \lambda \mathrm{e}^{\frac{t^2}{2}} \mid \lambda \in \mathbb{R} \right\}.$$

On cherche une solution particulière par la méthode de variation des constantes sous la forme $\varphi_p(t) = f(t)e^{\frac{t^2}{2}}$, avec f dérivable sur \mathbb{R} .

On obtient alors $f'(t) = e^{-\frac{t^2}{2}}$.

Choisissons par exemple, $f(t)=\int_0^t \mathrm{e}^{\frac{-s^2}{2}}\mathrm{d}s$. Alors $\varphi_p(t)=\mathrm{e}^{\frac{t^2}{2}}\int_0^t \mathrm{e}^{-\frac{s^2}{2}}\mathrm{d}s$.

Donc l'ensemble des solution de y' = ty + 1 est

$$\mathcal{S} = \left\{ \mathbb{R} \longrightarrow \mathbb{R} \; ; \; t \longmapsto \lambda e^{\frac{t^2}{2}} + e^{\frac{t^2}{2}} \int_0^t e^{-\frac{s^2}{2}} ds \; | \; \lambda \in \mathbb{R} \right\}.$$

Il existe donc $\lambda \in \mathbb{R}$ tel que pour tout $t \in \mathbb{R}$,

$$\psi(t) = \lambda e^{\frac{t^2}{2}} + e^{\frac{t^2}{2}} \int_0^t e^{-\frac{s^2}{2}} ds.$$

Or $\psi(0) = 0$. Donc $\lambda = 0$ et pour tout $t \in \mathbb{R}$,

$$\psi(t) = e^{\frac{t^2}{2}} \int_0^t e^{\frac{s^2}{2}} ds.$$

Exercice 2. On considère sur l'intervalle \mathbb{R}_+^* l'équation différentielle

$$ty' = t + y^2. (1)$$

- 1. Montrer que les solutions sont définies sur des intervalles bornés de \mathbb{R}_{+}^{*} .
- 2. Étudier le comportement d'une solution maximale aux bornes de son intervalle de définition.
- 1. L'application $f: \mathbb{R}_+^* \times \mathbb{R} \longrightarrow \mathbb{R}$ étant de classe \mathcal{C}^1 , d'après le théorème de Cauchy-Lipschitz, il existe une unique solution maximale définie sur un intervalle ouvert inclus dans \mathbb{R}_+^* à tout problème de Cauchy.

Soit φ_m une solution maximale de l'équation définie sur un intervalle I =]a, b[inclus dans \mathbb{R}_+^* . Ainsi, a > 0. Montrons que $b < +\infty$.

Soit
$$t_0 \in I$$
. Pour tout $t \in I$ tel que $t \ge t_0$, $\frac{1}{t} = \frac{\varphi_m'(t)}{t + \varphi_m(t)^2} \le \frac{\varphi_m'(t)}{t_0 + \varphi_m(t)^2} = \frac{1}{t_0} \frac{\varphi_m'(t)}{1 + \left(\frac{\varphi_m(t)}{\sqrt{t_0}}\right)^2}$.

Donc, pour tout $t \in I$ tel que $t \ge t_0$, par intégration et changement de variables $u = \frac{\varphi_m(t)}{\sqrt{t_0}}$ de classe \mathcal{C}^1 ,

$$\ln(t) \leq \frac{1}{\sqrt{t_0}} \arctan\left(\frac{\varphi_m(t)}{\sqrt{t_0}}\right) + \lambda \leq \frac{1}{\sqrt{t_0}} \frac{\pi}{2} + \lambda,$$

où $\lambda \in \mathbb{R}$. Donc, pour tout $t \in I$ tel que $t \geq t_0$, $t \leq e^{\frac{1}{\sqrt{t_0}} \frac{\pi}{2} + \lambda}$. Donc, en laissant tendre t vers b, on obtient $b \leq e^{\frac{1}{\sqrt{t_0}} \frac{\pi}{2} + \lambda}$ et donc $b < +\infty$. Donc I est un intervalle borné de \mathbb{R}_+^* .

Toute solution étant restriction d'une solution maximale, on en déduit que les solutions sont définies sur des intervalles bornés de \mathbb{R}_{+}^{*} .

2. Soit φ_m une solution maximale de l'équation définie sur un intervalle I=]a,b[inclus dans \mathbb{R}_+^* .

Etude de la limite en b: Pour tout $t \in I$, $\varphi_m'(t) = \frac{t + \varphi_m(t)^2}{t} > 0$ donc φ_m est strictement croissante. Elle admet donc une limite $\ell \in \overline{\mathbb{R}}$ en b.

Comme $b < +\infty$, d'après le théorème des bouts, on en déduit que φ_m n'admet pas de limite finie en b, puisque sinon, on aurait $(b,\ell') \in \mathbb{R}_+^* \times \mathbb{R}$ et φ_m ne serait pas maximale. Donc φ_m tend vers $+\infty$ en b.

Etude de la limite en a: De la même manière, φ_m admet une limite $\ell' \in \overline{\mathbb{R}}$ en a.

- 1er cas : a > 0. Comme 0 < a, d'après le théorème des bouts, on en déduit que φ_m n'admet pas de limite finie en a, puisque sinon, on aurait $(a, \ell') \in \mathbb{R}_+^* \times \mathbb{R}$ et φ_m ne serait pas maximale. Donc φ_m tend vers $-\infty$ en a.
- 2^{nd} cas : a = 0. Attention, le théorème des bouts ne s'applique plus car $a \notin \mathbb{R}_+^*$!

 φ_m étant strictement croissante, elle s'annule au plus une fois en un point t_1 . Considérons alors un élément t_0 de I tel que $t_0 < t_1$ si φ_m s'annule en t_1 .

Pour tout $t \in I$ tel que $t < t_0, \varphi_m(t) \neq 0$ et

$$\frac{\varphi_m'(t)}{\varphi_m(t)^2} = \frac{1}{\varphi_m(t)^2} + \frac{1}{t}.$$

Par intégration, pour tout $t \in]0, t_0[$,

$$\frac{1}{\varphi_m(t)} - \frac{1}{\varphi_m(t_0)} = \int_t^{t_0} \frac{1}{\varphi_m(s)^2} ds + \ln\left(\frac{t_0}{t}\right).$$

Supposons par l'absurde que $\ell' \neq 0$. Alors $t \longmapsto \frac{1}{\varphi_m(t)^2}$ est continue sur l'intervalle [0,b[et l'intégrale $\int_t^{t_0} \frac{1}{\varphi_m(s)^2} \mathrm{d}s$

converge vers $\int_0^{t_0} \frac{1}{\varphi_m(s)^2} \mathrm{d}s$ lorsque t tend vers 0

 $\text{Mais } \int_t^{t_0} \frac{1}{\varphi_m(s)^2} \mathrm{d}s = \frac{1}{\varphi_m(t)} - \frac{1}{\varphi_m(t_0)} - \ln\left(\frac{t_0}{t}\right) \text{ tend vers l'infini lorsque } t \text{ tend vers 0}.$

Ceci est absurde

Donc $\ell' = 0$ et φ_m tend vers 0 en 0.

Exercice 3. On s'intéresse au problème de Cauchy

$$\begin{cases} y' = e^{-ty}, \\ y(0) = 0. \end{cases}$$

- 1. Justifier qu'il existe une unique solution maximale φ_m à ce problème de Cauchy.
- 2. Montrer que φ_m est impaire.
- 3. Montrer que φ_m est définie sur \mathbb{R} .
- 4. Montrer que φ_m possède une limite finie a en $+\infty$.
- 5. Montrer que a > 1.
- 6. Montrer que $a \varphi_m(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t}\right)$.
- 7. En déduire que $\varphi_m(a) = a \frac{1}{a} e^{-at} + \underset{t \to +\infty}{o} (e^{-at}).$
- 1. L'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$; $(t,y) \longmapsto \mathrm{e}^{-ty}$ est de classe \mathcal{C}^1 . D'après le théorème de Cauchy-Lipschitz, ce problème de Cauchy admet donc une unique solution φ_m définie sur un intervalle ouvert I =]a,b[de \mathbb{R} contenant 0.
- 2. Posons, pour tout $t \in]-b, -a[, \psi(t) = -\varphi(-t)$. Alors ψ est bien définie, dérivable car φ l'est, et pour tout $t \in]-b, -a[$

$$\psi'(t) = \varphi'(-t) = e^{-(-t)\varphi_m(-t)} = e^{t\varphi_m(-t)} = e^{-t\psi(t)}.$$

De plus, $\psi(0) = -\varphi(-0) = 0$. Donc ψ est solution du problème de Cauchy

$$\begin{cases} y' = e^{-ty} \\ y(0) = 0. \end{cases}$$

Or φ_m est LA solution maximale de ce problème de Cauchy, donc ψ est une restriction de φ_m et $]-b,-a[\subset]a,b[$. On en déduit donc que a=-b et $\varphi=\psi$ sur l'intervalle]-b,b[.

Donc φ est impaire et I =]-b, b[.

3. Pour tout $t \in I$, $\varphi'_m(t) = e^{-t\varphi_m(t)} > 0$. Donc φ_m est strictement croissante sur I. De plus, comme $\varphi_m(0) = 0$, on en déduit que φ_m est positive sur [0, b[.

Supposons par l'absurde que $b < +\infty$.

Pour tout $t \in [0, b[$,

$$\varphi_m(t) = \int_0^t \varphi_m'(s) ds = \int_0^t e^{-s\varphi_m(s)} ds \le \int_0^t 1 ds = t \le b$$

Donc φ_m est croissante et majorée sur l'intervalle [0,b[. Elle admet donc une limite finie ℓ en b. Comme $(b,\ell) \in \mathbb{R}^2$, d'après le théorème des bouts, φ_m est prolongeable en b et n'est donc pas maximale. Ceci est absurde.

Donc $b = +\infty$ et $I = \mathbb{R}$.

L'application φ_m est donc définie sur \mathbb{R} .

4. Nous avons montré à la question précédente que pour tout $t \in [0, +\infty[$,

$$\varphi_m(t) = \int_0^t e^{-s\varphi_m(s)} ds.$$

 φ_m étant strictement croissante, on a $\varphi_m(1) > \varphi_m(0) = 0$. Donc pour tout $t \ge 1$, $0 \le e^{-t\varphi(t)} \le e^{-\varphi_m(1)t}$.

 $\text{Comme } \varphi_m(1) > 0, \, \mathrm{e}^{-\varphi_m(1)t} = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right) \text{. L'application } t \longmapsto \frac{1}{t^2} \, \text{\'etant int\'egrable au voisinage de } +\infty \, \mathrm{d'apr\`es le taut int\'egrable}$

critère de Riemann, par comparaison de fonctions positives, $t \mapsto e^{-\varphi_m(1)t}$ et donc $t \mapsto e^{-t\varphi_m(t)}$ sont intégrables au voisinage de $+\infty$.

Donc φ_m converge vers $a = \int_0^{+\infty} e^{-s\varphi(s)} ds$ en $+\infty$.

5.
$$\varphi_m$$
 étant croissante, pour tout $t \in \mathbb{R}_+$, $\varphi_m(t) \le a$.
Donc $a = \int_0^{+\infty} e^{-s\varphi(s)} ds \ge \int_0^{+\infty} e^{-as} ds = \frac{1}{a}$.

Donc $a^2 \ge 1$ et comme a > 0, on en déduit que $a \ge 1$.

On a a=1 si et seulement si l'inégalité dans les intégrales est une égalité, soit si et seulement si, pour tout $t \in \mathbb{R}_+$, $\varphi_m(s) = a$. Or $\varphi_m(0) = 0 < a$. Donc $a \neq 1$ et a > 1.

6. On a

$$0 \le t(a - \varphi_m(t)) = t \left(\int_0^{+\infty} e^{-s\varphi_m(s)} ds - \int_0^t e^{-s\varphi_m(s)} ds \right) = t \int_t^{+\infty} e^{-s\varphi_m(s)} ds.$$

Or, par stricte croissante de φ_m et positivité sur \mathbb{R}_+ , $te^{-t\varphi_m(t)} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$.

 $t\longmapsto rac{1}{t^2}$ étant intégrable au voisinage de $+\infty$ d'après le critère de Riemann, par comparaison de fonctions positives, $t \longmapsto t e^{-t\varphi_m(t)}$ est intégrable sur \mathbb{R}_+ .

Comme

$$0 \le t(a - \varphi_m(t)) \le \int_t^{+\infty} s e^{-s\varphi_m(s)} ds,$$

on en déduit que $t(a-\varphi_m(t))=\int_t^{+\infty}s\mathrm{e}^{-s\varphi_m(s)}\mathrm{d}s$ tend vers 0 lorsque t tend vers $+\infty$.

Donc $a - \varphi_m(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t}\right)$

7. Comme $at - t\varphi_m(t)$ tend vers 0 lorsque t tend vers $+\infty$, on a $e^{-t\varphi_m(t)} \sim e^{-at}$. Donc par intégration des équivalents entre fonctions positives intégrables,

$$\int_{t}^{+\infty} e^{-s\varphi_{m}(s)} ds \underset{t \to +\infty}{\sim} \int_{t}^{+\infty} e^{-as} ds = \frac{1}{a} e^{-at}.$$

Comme $a - \varphi_m(t) = \int_t^{+\infty} e^{-s\varphi_m(s)} ds$, on en déduit que

$$a - \varphi_m(t) \sim \frac{1}{t \to +\infty} \frac{1}{a} e^{-at},$$

soit

$$\varphi_m(t) = a - \frac{1}{a}e^{-at} + \underset{t \to +\infty}{o}(e^{-at}).$$