FEUILLE DE TD Nº 1 - CORRECTION 5 MARS 2021

Cours: Algèbre 2

Exercice 1. On considère la suite $(P_n)_{n\in\mathbb{N}}$ des polynômes de $\mathbb{R}[X]$ définie par

$$\begin{cases} P_0(X) = 1 \\ P_1(X) = X \\ \vdots \\ P_n(X) = 2XP_{n-1}(X) - P_{n-2}(X) \end{cases}.$$

Déterminer le degré de P_n et le coefficient dominant.

En calculant les premiers termes, puis en faisant récurrence double sur n, on trouve que deg $P_n = n$ et le coefficient dominant est 1 pour n = 0 et 2^{n-1} sinon.

Exercice 2. Soit P un polynôme de $\mathbb{K}[X]$. Déterminer le degré du polynôme :

$$P(X+1) - P(X)$$

en fonction du degré de P.

- 1. Si P est nul ou constant, le degré de P(X+1) P(X) = 0 est $-\infty$.
- 2. Sinon, écrivons $P(X)=\sum_{k=0}^n a_k X^k$ avec $a_n\neq 0$. En développant P(X+1) grâce au binôme de Newton, on trouve :

$$P(X+1) - P(X) = \sum_{k=0}^{n} a_k \sum_{l=0}^{k-1} {k \choose l} X^{l}.$$

Le degré de P(X+1)-P(X) est n-1 car le coefficient devant X^m pour $m\geq n$ est 0 et le coefficient devant X^{n-1} est na_n , qui est non nul.

Exercice 3. Pour $n \in \mathbb{N}$, développer le polynôme

$$P(X) = (1+X)(1+X^2)(1+X^4)\dots(1+X^{2^n}).$$

$$\overline{\text{On a } (1-X)P(X)} = 1 - X^{2^{n+1}} \text{ et donc}$$

$$P(X) = \frac{1 - X^{2^{n+1}}}{(1 - X)} = 1 + X + X^2 + \dots + X^{2^{n+1} - 1}.$$

Exercice 4. Résoudre les équations suivantes :

- 1. $P(X^2) = (X^2 + 1)P(X)$. (Ici, X est l'indéterminée.)
- 2. $Q^2 = XP^2$ d'inconnues $P, Q \in \mathbb{K}[X]$. (Ici, X est l'indéterminée.)
- 3. $P \circ P = P$ d'inconnue $P \in \mathbb{K}[X]$.
- P = 0 est une solution. Faisons une analyse-synthèse pour trouver les autres solutions.
 Soit P une solution non nulle. Notons n son degré (n ∈ N). Alors

$$\deg P(X^2) = 2n$$
 et $\deg(X^2 + 1)P(X) = 2 + n$.

On en déduit que n=2. Donc $\exists a,b,c\in\mathbb{K}, P(X)=aX^2+bX+c$. On a $P(X^2)=(X^2+1)P(X)\Leftrightarrow aX^4+bX^2+c=aX^4+bX^3+(a+c)X^2+bX+c\Leftrightarrow \begin{cases} a=a\\b=0\end{cases}$. Ce qui est équivalent à P est de la forme aX^2-a . c=-a

- Réciproquement, les polynômes de la forme $aX^2 a$ sont solutions. L'ensemble des solutions est $\{0\} \cup \{aX^2 - a, a \in \mathbb{K}\} = \{aX^2 - a, a \in \mathbb{K}\}$
- 2. Si (P,Q) est un couple solution de polynômes non nuls alors $Q^2=XP^2$ donne $2\deg(Q)=1+2\deg(P)$ avec $\deg(Q)$, $\deg(P)\in\mathbb{N}$ ce qui est impossible. Il reste le cas où l'un des polynômes P ou Q est nul et l'autre, alors, l'est aussi.
 - Inversement, le couple nul est effectivement solution.
- 3. Si $\deg{(P)}\geqslant 2$ alors $\deg{(P\circ P)}=\deg{(P)}^2>\deg{(P)}$ et donc P n'est pas solution.
 - Si deg $(P) \leq 1$ alors on peut écrire P = aX + b et alors

$$P \circ P = P \iff a(aX + b) + b = aX + b \iff a^2 = a, ab = 0.$$

Après résolution on obtient a=1 et b=0 ou a=0 et b quelconque. Finalement les solutions sont le polynôme X et les polynômes constants.

Exercice 5. Soit $(P_n)_{n\in\mathbb{N}^*}$ la suite de polynômes définie par

$$P_1 = X - 2 \text{ et } \forall n \in \mathbb{N}^*, P_{n+1} = P_n^2 - 2.$$

Calculer le coefficient de X^2 dans P_n .

Notons $P_n = \cdots + a_n X^2 + b_n X + c_n, n \in \mathbb{N}^*$, et on a $a_1 = 0, b_1 = 1, c_1 = -2$.

 $P_{n+1} = P_n^2 - 2 = \dots + c_n^2 - 2 + 2b_n c_n X + (b_n^2 + 2a_n c_n) X^2$, donc $c_{n+1} = c_n^2 - 2, b_{n+1} = 2b_n c_n, a_{n+1} = b_n^2 + 2a_n c_n$.

On a $c_1 = -2$, $c_2 = 2$. Par récurrence, on a $c_n = 2$, $n \ge 2$.

De façon similaire, $b_1 = 1, b_2 = 2b_1c_1 = -4$, par récurrence, on a $b_n = -4^{n-1}, n \ge 2$.

Puis, on a pour $n \geq 2$,

$$a_{n+1} = b_n^2 + 2a_n c_n = 4^{2n-2} + 4a_n. (1)$$

^{1.} Ici, "o" est la composition des deux polynômes comme la compositions des applications.

Méthode nº1 On cherche a_n telle qu'il existe $C \in \mathbb{K}$ tel que $a_n + C \cdot 4^{2n-2}, n \geq 2$ est une suite géométrique de raison 4. C'est à dire

$$a_{n+1} + C \cdot 4^{2n} = 4(a_n + C \cdot 4^{2n-2}). \tag{2}$$

En comparant (1) et (2), on peut déduire $C = -\frac{1}{12}$.

Donc,
$$a_n - \frac{1}{12} \cdot 4^{2n-2} = 4^{n-2} \cdot (a_2 - \frac{1}{12} \cdot 4^2) = -\frac{4^{n-2}}{3}, n \ge 2.$$

Alors,
$$a_n = \frac{4^{2n-2}}{12} - \frac{4^{n-2}}{3} = \frac{4^{2n-3} - 4^{n-2}}{3}, n \ge 2$$
, c'est le coefficient de X^2 .

Méthode $\mathbf{n}^0\mathbf{2}$ On fait une méthode semblable à celle qu'on utilisera pour résoudre des équations différentielles. Pour $n\geq 2$, on veut résoudre (1). On commence par résoudre l'équation sans second membre :

$$a_{n+1} = 4a_n \tag{3}$$

La solution est $a_n = K4^{n-2}$ où K est une constante. Pour trouver la solution de (1), on applique la méthode de la « variation de la constante » : on suppose que K dépend de n, on note donc K_n et on remplace a_n par K_n4^{n-2} dans (1). On obtient :

$$4^{n-1}K_{n+1} = 4 \times 4^{n-2}K_n + 4^{2n-2} \tag{4}$$

(4) est équivalente à $K_{n+1}=K_n+4^{n-1}$ qu'on résout en reconnaissant une série géométrique : $K_n=K_2+\sum_{k=1}^{n-2}4^k=K_2+\frac{4^{n-1}-4}{3}$. Donc $a_n=4^{n-2}(K_2+\frac{4^{n-1}-4}{3})$. Comme $a_2=1$, on a que $K_2=1$. Donc on trouve que $a_n=\frac{4^{2n-3}-4^{n-2}}{3}$ si $n\geq 2$ (et $a_1=0$).