FEUILLE DE TD Nº 2 - CORRECTION

Logique et quantificateurs

12 mars 2021

Vocabulaire: fonction croissante \常值函数\, diviser \除\, solution \解\, produit \积\,

Exercice 1 (Réciproque et contraposée).

- 1. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Donner la réciproque puis la contraposée de la proposition « f croissante $\Rightarrow f(3) \geq f(2)$ ».
- 2. Soient x et y deux nombres réels. Donner la réciproque puis la contraposée de la proposition $(x, y) \neq 0 \Rightarrow x \neq 0$ et $y \neq 0 \gg 0$.
- 1. Réciproque : « $f(3) \ge f(2) \Rightarrow f$ croissante ». Contraposée : « $f(3) < f(2) \Rightarrow f$ n'est pas croissante ».
- 2. Réciproque : « $x \neq 0$ et $y \neq 0 \Rightarrow xy \neq 0 >$. Contraposée : « x = 0 ou $y = 0 \Rightarrow xy = 0$ ».

Exercice 2 (Implications, équivalences). Soient x, a et b des nombres réels. Compléter les pointillés avec \Rightarrow , \Leftrightarrow ou \Leftarrow pour que les propositions suivantes soient vraies :

- 1. $x < 1 \Leftrightarrow \ln(x) < 0$,
- 2. $x = \frac{\pi}{3} \Rightarrow \cos(x) = \frac{1}{2}$.

La réciproque est fausse puisque par exemple, $\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}$.

 $3. \ 0 \le x \le 3 \Rightarrow |x| \le 3.$

La réciproque est fausse puisque par exemple $|-2|=2\leq 3$ et $-2\notin [0,3]$.

- $4. \ \frac{1}{x} > 0 \Leftrightarrow x > 0,$
- 5. $a = b \Rightarrow a^2 = b^2$.

La réciproque est fausse puisque l'on peut avoir a = -b.

6. a > 0 et $b > 0 \Rightarrow ab > 0$.

La réciproque est fausse puisque pour a < 0 et b < 0, on a aussi ab > 0.

Exercice 3. Compléter avec \forall ou \exists pour que les énoncés suivants soient vrais.

- 1. $\forall x \in \mathbb{R}, (x+1)^2 = x^2 + 2x + 1.$
- 2. $\exists x \in \mathbb{R}, 2x+1=0$. En effet, pour $x=-\frac{1}{2}$, l'équation est vérifiée.
- 3. $\exists x \in \mathbb{R}, x^2 + 3x + 2 = 0$. En effet, cette équation a deux solutions réelles, -1 et -2.
- 4. $\forall x \in \mathbb{R}, x^2 + 2x + 3 \neq 0$. En effet le discriminant \判别式\ Δ est strictement négatif.

Exercice 4. Soit $A = \{26, 13, 5, 28\}$. Dire si les propositions suivantes sont vraies ou fausses.

- 1. $\forall k \in A, k \leq 30$.
- 2. $\forall k \in A, k \text{ est pair.}$
- 3. $\exists k \in A$, k est un multiple de 4.

- 1. Vrai : tous les éléments de A sont inférieurs ou égaux à 30.
- 2. Faux : par exemple, 13 est un élément de A qui est impair.
- 3. Vrai : 28 est un élément de A qui est multiple de 4 : $28 = 4 \times 7$.
- 4. Vrai : en prenant k=5, tous les éléments de A sont supérieurs ou égaux à 5.
- 5. Vrai : en prenant par exemple $k_1=13$ et $k_2=26$, k_1 divise k_2 puisque $26=2\times 13$.
- 6. Vrai : pour tous les éléments k_1 de A, en prenant $k_2=k_1\in A,\,k_1$ divise k_2 puisque $k_1=1\times k_1.$

Exercice 5. Pour chacune des propositions suivantes, expliquer en français leur signification puis indiquer si elle est vraie ou fausse. Que peut-on conclure?

- 1. $\forall y \in \mathbb{R}_+, \ \exists x \in \mathbb{R}, \ y = x^2,$ 2. $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}_+, \ y = x^2.$
- 1. Tout nombre réel positif est le carré d'un nombre réel. Cette proposition est vraie : pour tout élément $y \in \mathbb{R}$, on peut prendre $x = \sqrt{y}$ et alors $y = x^2$. Ici, le x dépend du y.

6. $\exists x \in C, x \notin A \ et \ x \in F$,

7. $\exists z \in [1, 10[, q(z) > f(z)].$

8. $\forall z \in B, (z \notin F \Rightarrow z \in A),$

9. $\forall x \in A, (x > \sqrt{x} ou \ln x > 0).$

2. Tout nombre réel positif est le carré d'un $\mathbf{m}\mathbf{\hat{e}me}$ nombre réel. Cette proposition est fausse, sinon tous les nombres réels positifs seraient égaux.

On ne peut donc pas intervertir les quantificateurs \exists et \forall .

Exercice 6. Écrire la négation des propositions suivantes.

- 1. $\exists z \in C, z \in B$,
- 2. $\forall z \in D, z \notin E$,
- 3. $\exists y \in]-\infty, 2], h(y) = 0,$
- 4. $\forall n \in \mathbb{N}^*, -n^2 1 > 0,$
- 5. $\forall q \in \mathbb{N}, 2q-1 \text{ est impair,}$
- 10. $\exists x \in \mathbb{R}, (x+1=0 \ et \ x+2=0),$
- 11. $(\exists x \in \mathbb{R}, x+1=0)$ et $(\exists x \in \mathbb{R}, x+2=0)$,
- 12. $\forall (n,m) \in \mathbb{Z}^2, (\sqrt{n} + \sqrt{m} = 0 \Rightarrow n = m = 0)$.
- 13. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, |x y| > 1.$
- 14. $\forall M > 0, \exists x_0 \in \mathbb{R}, \forall x \in \mathbb{R}, (x > x_0 \Rightarrow f(x) > M).$
- 1. $\forall z \in C, z \notin B$.
- 2. $\exists z \in D, z \in E$.
- 3. $\forall y \in]-\infty, 2], h(y) \neq 0.$
- 4. $\exists n \in \mathbb{N}^*, -n^2 1 \le 0.$
- 5. $\exists q \in \mathbb{N}, 2q-1 \text{ est pair.}$
- 6. $\forall x \in C, x \in A \text{ ou } x \notin F$. (la négation de « P et Q » est « non(P) ou non(Q) »).
- 7. $\forall z \in [1, 10], g(z) \le f(z)$.
- 8. $\exists z \in B, (z \notin F \text{ et } z \notin A)$. (la négation de « $P \Rightarrow Q$ » est « P et non(Q) »)
- 9. $\exists x \in A, (x \leq \sqrt{x} \text{ et } \ln(x) \leq 0).$ (la négation de « P ou Q » est « non(P) et non(Q) »
- 10. $\forall x \in \mathbb{R}, (x+1 \neq 0 \text{ ou } x+2 \neq 0).$
- 11. $(\forall x \in R, x+1 \neq 0)$ ou $(\forall x \in \mathbb{R}, x+2 \neq 0)$.
- 12. $\exists (n, m) \in \mathbb{Z}^2, \sqrt{n} + \sqrt{m} = 0 \text{ et } (n \neq 0 \text{ ou } m \neq 0).$ En effet, « $\sqrt{n} + \sqrt{m} = 0 \Rightarrow n = m = 0$ » peut se réécrire $\sqrt{n} + \sqrt{m} = 0 \Rightarrow (n = 0 \text{ et } m = 0)$.
- 13. $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, |x y| \le 1.$
- 14. $\exists M > 0, \forall x_0 \in \mathbb{R}, \exists x \in \mathbb{R}, (x > x_0 \text{ et } f(x) \leq M).$ En effet, $\forall M>0$ se réécrit $\forall M\in\mathbb{R}_{+}^{*}$, donc en passant à la négation, on obtient $\exists M\in\mathbb{R}_{+}^{*}$, c'est-à-dire $\exists M>0$.

Exercice 7. Écrire à l'aide des quantificateurs les propositions suivantes.

- 1. L'équation f(x) = 0 a une unique solution dans \mathbb{R} .
- 2. L'équation f(x) = 0 n'a pas de solution.
- 3. Pour tout réel strictement positif ε , il existe un entier naturel N tel que, pour tout entier naturel n supérieur ou égal à N, on a $|1/n| < \varepsilon$.
- 4. Tous les nombres réels positifs sont le carré d'au moins un nombre réel.
- 5. Tout nombre rationnel r s'écrit sous la forme $\frac{p}{q}$ où p appartient à \mathbb{Z} et q appartient à \mathbb{N}^* .
- 6. Pour tout nombre réel non nul, il existe un nombre réel tel que le produit des deux nombres vaut 1.

^{1.} $\exists ! x \in \mathbb{R}, f(x) = 0.$

^{2.} La proposition n'est pas assez précise, complétons-la : L'équation f(x)=0 n'a pas de solution dans \mathbb{R} . $\forall x \in \mathbb{R}, f(x) \neq 0$.

 $[\]begin{aligned} 3. \ \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geq N \Rightarrow |1/n| < \varepsilon). \\ \text{La lettre grecque } \varepsilon \text{ se prononce } \ast \text{ epsilon } \ast. \end{aligned}$

^{4.} $\forall x \in \mathbb{R}_+, \exists y \in \mathbb{R}, x = y^2$.

 $^{5. \ \}forall r \in \mathbb{Q}, \, \exists p \in \mathbb{Z}, \, \exists q \in \mathbb{N}^*, \, r = \frac{p}{q}.$

^{6.} $\forall x \in \mathbb{R}^*, \exists y \in \mathbb{R}, xy = 1.$