FEUILLE DE TD Nº 5

Raisonnements classiques

29 mars 2021

Exercice 1 (Disjonction de cas).

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, 4 divise n^2 ou 4 divise $n^2 1$.
- 2. Démontrer que pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 x + 1$.

Exercice 2. Démontrer par contraposée les propositions suivantes :

- 1. Soient $(x,y) \in \mathbb{R}^2$. Si $x \neq y$ alors $(x+1)(y-1) \neq (x-1)(y+1)$.
- 2. Soit x un réel. Si, pour tout $\varepsilon>0$, $|x|<\varepsilon$, alors x=0.

Exercice 3. Démontrer par l'absurde que si n est le carré d'un nombre entier non nul alors 2n n'est pas le carré d'un nombre entier.

Exercice 4. Démontrer par récurrence les propositions suivantes :

- 1. Pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. Pour tout $n \in \mathbb{N}$, $4^n + 5$ est un multiple de 3.
- 3. Soit $x \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0,\ u_1=1$ et pour tout $n\in\mathbb{N},$ $u_{n+2}=5u_{n+1}-6u_n.$

Alors, pour tout $n \in \mathbb{N}$, $u_n = 3^n - 2^n$.

5. Soit $(v_n)_{n\in\mathbb{N}^*}$ le suite définie par $v_1=3$ et pour tout $n\in\mathbb{N}^*$,

$$v_{n+1} = \frac{2}{n} \sum_{k=1}^{n} v_k.$$

Alors, pour tout $n \in \mathbb{N}^*$, $v_n = 3n$.

Exercice 5. Démontrer par analyse-synthèse les propositions suivantes :

- 1. Toute fonction de $\mathbb R$ dans $\mathbb R$ s'écrit, de façon unique, comme la somme d'une fonction paire et d'une fonction impaire.
 - Autrement dit, pour toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$, il existe une unique fonction paire $g: \mathbb{R} \longrightarrow \mathbb{R}$ et une unique fonction impaire $h: \mathbb{R} \longrightarrow \mathbb{R}$ telles que f = g + h.
- 2. Il existe une unique fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que, pour tout $(x, y) \in \mathbb{R}^2$,

$$f(x)f(y) - f(xy) = x + y.$$