FEUILLE DE TD Nº 7

 $Vocabulaire\ en\ g\'eom\'etrie,\ produit\ scalaire\ et\ produit\\ vectoriel$

13 AVRIL 2021

Exercice 1 (Vocabulaire et construction géométrique).

- 1. Tracer un repère orthonormé (O, \vec{i}, \vec{j}) .
- 2. Placer le point A de coordonnées (3,3) et le point P de coordonnées (3,1).
- 3. Tracer la droite \mathcal{D}_1 passant par l'origine du repère et le point A.
- 4. Placer le point Q, symétrique du point P par rapport à la droite \mathcal{D}_1 .
- 5. Placer le point I, projeté du point Q sur la droite dirigée par \vec{j} parallèlement à la droite \mathcal{D}_1 .
- 6. Tracer la droite \mathcal{D}_2 perpendiculaire à \mathcal{D}_1 passant par le point I.
- 7. Noter J le point d'intersection de la droite \mathcal{D}_2 et de la droite dirigée par \vec{i} .
- 8. Quelle est la nature du quadrilatère IJPQ?

Exercice 2. Dans le plan muni d'un repère orthonormé, on considère les points A(-2,2), B(4,4), C(5,1) et D(-1,-1). Démontrer que le quadrilatère ABCD est un rectangle.

Exercice 3. Dans le plan muni d'un repère orthonormé, on considère les vecteurs

$$\vec{u} \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \text{ et } \vec{v} \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$$

- 1. Déterminer un vecteur unitaire et normal au plan dirigé par \vec{u} et \vec{v} .
- 2. Déterminer un vecteur orthogonal à \vec{u} et coplanaire à \vec{u} et \vec{v} .

Exercice 4. On se place dans l'espace muni d'un repère orthonormé direct.

- 1. Déterminer une équation cartésienne (de la forme ax + by + cz + d = 0) du plan passant par les points A(1,0,-2), B(0,2,1) et C(-1,1,0).
- 2. Déterminer les coordonnées du projeté orthogonal du point M(a, b) sur la droite \mathcal{D} d'équation x 2y 1 = 0.

Exercice 5. Soient \vec{u} et \vec{v} deux vecteurs de l'espace. Démontrer que

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left(\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 \right).$$

Exercice 6 (Formule d'Al-Kashi). Soit ABC un triangle du plan. On note $a=BC,\,b=CA$ et c=AB. Démontrer que

$$a^2 = b^2 + c^2 - 2bc\cos(\widehat{BAC})$$

Exercice 7. Soit \vec{u} un vecteur unitaire et $(O, \vec{i}, \vec{j}, \vec{k})$ un repère orthonormé direct.

- 1. Calculer $\alpha = \left\| \vec{u} \wedge \vec{i} \right\|^2 + \left\| \vec{u} \wedge \vec{j} \right\|^2 + \left\| \vec{u} \wedge \vec{k} \right\|^2$.
- 2. En déduire que l'une de ces trois normes est supérieure ou égale à $\sqrt{\frac{2}{3}}$.

Exercice 8. Soient \vec{a} et \vec{b} deux vecteurs de l'espace. On veut déterminer les solutions \vec{x} de l'équation vectorielle

$$\vec{x} + \vec{a} \wedge \vec{x} = \vec{b}.$$

- 1. Soit \vec{x} une solution. Montrer que $\vec{a} \cdot \vec{x} = \vec{a} \cdot \vec{b}$.
- 2. En déduire une expression de \vec{x} . On pourra utiliser la proposition 62 du cours.
- 3. Conclure.