CORRIGÉ DU TD Nº 10

Polynômes irréductibles, polynômes d'interpolation de Lagrange et divers

17 MAI 2021

Exercice 1 (Entraînement).

1. Décomposer en produit d'irréductibles dans $\mathbb{R}[X]$ les polynômes suivants :

(a) $X^4 + 3X^2 - 4$.

(b) $X^8 - 1$.

- (c) $X^5 1$, (d) $X^9 + X^6 + X^3 + 1$
- 2. (a) Déterminer un polynôme de degré 2 tel que P(-1) = 1, P(0) = -1 et P(1) = -1. Ce polynôme est-il unique?
 - (b) Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que P(-1) = 1, P(0) = -1 et P(1) = -1.
- 1. (a) On a $X^4 + 3X^2 4 = P(X^2)$ où $P = X^2 + 3X 4$.

Or P = (X - 1)(X + 4).

Donc $X^4 + 3X^2 - 4 = (X^2 - 1)(X^2 + 4) = (X - 1)(X + 1)(X^2 + 4)$.

(b) $X^8 - 1 = (X^4 - 1)(X^4 + 1) = (X^2 - 1)(X^2 + 1)(X^4 + 1) = (X - 1)(X + 1)(X^2 + 1)(X^4 + 1)$. Il reste donc à factoriser X^4-1 en regardant les racines 4-ièmes de l'unité.

$$\begin{split} X^4 + 1 &= (X - e^{i\pi/4})(X - e^{3i\pi/4})(X - e^{5i\pi/4})(X - e^{7i\pi/4}) \\ &= \left((X - e^{i\pi/4})(X - e^{7i\pi/4}) \right) \left((X - e^{3i\pi/4})(X - e^{5i\pi/4}) \right) \\ &= (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1). \end{split}$$

Les deux polynômes de degré 2 que l'on obtient n'ont pas de racines réelles, ils sont donc irréductibles dans $\mathbb{R}[X].$

D'où

$$X^{8} - 1 = (X - 1)(X + 1)(X^{2} + 1)(X^{2} - \sqrt{2}X + 1)(X^{2} + \sqrt{2}X + 1).$$

(c) On factorise sur $\mathbb C$ puis on regroupe les termes conjugués :

$$\begin{split} X^5 - 1 &= (X - 1)(X - \mathrm{e}^{\frac{2i\pi}{5}})(X - \mathrm{e}^{\frac{4i\pi}{5}})(X - \mathrm{e}^{\frac{6i\pi}{5}})(X - \mathrm{e}^{\frac{8i\pi}{5}}) \\ &= (X - 1)(X - \mathrm{e}^{\frac{2i\pi}{5}})(X - \mathrm{e}^{\frac{-2i\pi}{5}})(X - \mathrm{e}^{\frac{4i\pi}{5}})(X - \mathrm{e}^{\frac{-4i\pi}{5}}) \\ &= (X - 1)(X^2 - 2\cos(\frac{2\pi}{5})X + 1)(X^2 - 2\cos(\frac{4\pi}{5})X + 1). \end{split}$$

(d) On va commencer par décomposer $Q(X) = X^3 + X^2 + X + 1$, dont -1 est racine évidente. On en déduit

$$Q(X) = (X+1)(X^2+1) = (X+1)(X-i)(X+i).$$

On a $P(X) = Q(X^3) = (X^3 + 1)(X^3 - i)(X^3 + i)$ et il s'agit maintenant de trouver les racines 3-ièmes de -1, i

Les racines cubiques de -1 sont $-1,\,e^{i\,\frac{\pi}{3}}$ et $e^{-i\,\frac{\pi}{3}}.$

Les racines cubiques de $i=e^{i\frac{\pi}{2}}$ sont $e^{i\frac{\pi}{6}},\,e^{i\frac{5\pi}{6}}$ et $e^{i\frac{9\pi}{6}}=e^{i\frac{3\pi}{2}}=-i.$

Les racines cubiques de -i sont les conjuguées de celles de i, à savoir $e^{-i\frac{\pi}{6}}$, $e^{-i\frac{5\pi}{6}}$ et i.

On trouve donc la factorisation

$$X^9 + X^6 + X^3 + 1 = (X+1)(X+i)(X-i)\left(X - \mathrm{e}^{i\pi/3}\right)\left(X - \mathrm{e}^{-i\pi/3}\right)\left(X - \mathrm{e}^{-i\pi/6}\right)\left(X - \mathrm{e}^{-i\pi/6}\right)\left(X - \mathrm{e}^{-i\pi/5}\right)\left(X - \mathrm{e}^{-i\pi/5}\right)$$

Dans $\mathbb{R}[X]$, on peut factoriser sous la forme

$$X^9 + X^6 + X^3 + 1 = (X+1)(X^2+1)(X^2-X+1)(X^2-\sqrt{3}X+1)(X^2+\sqrt{3}X+1)$$

2. (a) Considérons les polynômes de Lagrange L_0 , L_1 et L_2 associés à $x_0 = -1$, $x_1 = 0$ et $x_2 = 1$. Ils sont donnés par

$$L_0 = \frac{X(X-1)}{(-1)(-1-1)} = \frac{X^2 - X}{2},$$

$$L_1 = \frac{(X+1)(X-1)}{(0+1)(0-1)} = -(X^2 - 1),$$

$$L_2 = \frac{(X+1)X}{(1+1)1} = \frac{X^2 + X}{2}.$$
le polynôme

Alors un polynôme qui convient est le polynôme

$$P_0 = 1L_0 - 1L_1 - 1L_2 = X^2 - X - 1.$$

C'est le seul qui convient, car si P est un polynôme de degré (inférieur ou égal à) 2 qui convient, alors $P - P_0$ est de degré au plus 2 et admet au moins 3 racines : c'est donc le polynôme nul.

(b) Soit P un tel polynôme. Alors, utilisant le polynôme P_0 introduit à la question précédente, et posant $Q = P - P_0$, on a Q(-1) = Q(0) = Q(1) = 0. Autrement dit, Q est divisible par $(X + 1)X(X - 1) = X^3 - X$, et P s'écrit

$$P(X) = X^2 - X - 1 + (X^3 - X)R$$

avec $R \in \mathbb{R}[X]$. Réciproquement, tous les polynômes de cette forme conviennent.

Exercice 2. Soit $a \in]0, \pi[$. Soit $n \in \mathbb{N}^*$. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme

$$X^{2n} - 2\cos(na)X^n + 1.$$

Les racines de $X^2 - 2\cos(na)X + 1$ sont e^{ina} et e^{-ina} puis que le produit des racines vaut $r_1r_2 = 1$ et leur somme vaut $r_1 + r_2 = 2\cos(na)$.

Donc

$$X^{2n} - 2\cos(na)X^n + 1 = (X^n - e^{ina})(X^n - e^{-ina}).$$

Soit z une racine complexe de $X^n - e^{ina}$.

Alors $z^n = \left(\mathrm{e}^{ia}\right)^n$ donc $\frac{z}{\mathrm{e}^{ia}}$ est une racine n-ième de l'unité.

Donc
$$\frac{z}{e^{ia}} \in \left\{ e^{2ik\pi/n} \mid k \in \{0, \dots n-1\} \right\}.$$

Donc les racines de $X^n - e^{ina}$ sont les $e^{ia+2ik\pi/n}$ où $k \in \{0, ..., n-1\}$.

 $z \in \mathbb{C}$ est racine de $X^n - \mathrm{e}^{ina}$ si et seulement si \overline{z} est racine de $X^n - \mathrm{e}^{-ina}$ par passage au conjugué. Donc les racines de $X^n - \mathrm{e}^{-ina}$ sont les $\mathrm{e}^{-ia-2ik\pi/n}$ où $k \in \{0,\dots,n-1\}$.

Donc

$$X^{2n} - 2\cos(na)X^n + 1 = \prod_{k=0}^{n-1} (X - e^{ia + 2ik\pi/n}) \prod_{k=0}^{n-1} (X - e^{-ia - 2ik\pi/n}).$$

Il s'agit de la factorisation dans $\mathbb{C}[X]$.

On regroupe les termes conjugués pour obtenir la factorisation dans $\mathbb{R}[X]$:

$$X^{2n} - 2\cos(na)X^n + 1 = \prod_{k=0}^{n-1} (X - e^{ia + 2ik\pi/n})(X - e^{-ia - 2ik\pi/n}) = \prod_{k=0}^{n-1} (X^2 - 2\cos\left(a + \frac{2k\pi}{n}\right)X + 1).$$

Il s'agit de la factorisation dans $\mathbb{R}[X]$.

Exercice 3. Montrer que le polynôme $X^3 + X + 1$ est irréductible dans $\mathbb{Q}[X]$.

Le polynôme $X^3 + X + 1$ étant de degré 3, nous avons vu en cours qu'il est irréductible si et seulement s'il n'admet pas de racines dans \mathbb{O}

Supposons qu'il existe $r \in \mathbb{Q}$ tel que r soit racine de $X^3 + X + 1$. r s'écrit $r = \frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ et on peut supposer p et q premiers entre eux.

On a donc $p^3 + pq^2 + q^3 = 0$, soit $p(p^2 + q^2) = -q^3$.

Donc $p \mid q^3$. Or p et q sont premiers entre eux donc d'après le lemme de Gauss, $p \mid q^2$, puis de même $p \mid q$ et enfin $p \mid 1$. Donc $p = \pm 1$.

On a $p^3 = -q(q^2 + pq)$ donc $q \mid p^3$. Donc q = 1.

Donc $r = \pm 1$.

Mais 1 et -1 ne sont pas racines de $X^3 + X + 1$.

Donc $X^3 + X + 1$ n'a pas de racines dans $\mathbb Q$ et est donc irréductible (car de degré ≤ 3).

Exercice 4. Montrer que pour tout $n \in \mathbb{N}$, il existe des réels $\lambda_0, \ldots, \lambda_n$ tels que pour tout $P \in \mathbb{R}_n[X]$,

$$\int_0^1 P(t)dt = \sum_{k=0}^n \lambda_k P\left(\frac{k}{n}\right).$$

Posons, pour tout $k \in \{0, ..., n\}$, $x_k = \frac{k}{n}$. Alors les x_k sont deux à deux distincts.

Notons L_0, \ldots, L_n les polynômes de Lagrange associés aux x_k . Posons, pour tout $k \in \{0, \ldots, n\}$, $\lambda_k = \int_0^1 L_k(t) dt$, Soit $P \in \mathbb{R}_n[X]$.

D'après le cours, on a $P = \sum_{k=0}^{n} P(x_k) L_k = \sum_{k=0}^{n} P\left(\frac{k}{n}\right) L_k$.

Donc en intégrant, on obtient

$$\int_0^1 P(t)\mathrm{d}t = \sum_{k=0}^n \int_0^1 P\left(\frac{k}{n}\right) L_k(t)\mathrm{d}t = \sum_{k=0}^n \int_0^1 L_k(t)\mathrm{d}t P\left(\frac{k}{n}\right).$$

D'où
$$\int_0^1 P(t) dt = \sum_{k=0}^n \lambda_k P\left(\frac{k}{n}\right)$$
.

Exercice 5. Considérons l'application

$$f: \mathbb{R}[X] \to \mathbb{R}[X], \ P(X) \mapsto XP'(X) - P(X)$$

définie sur l'ensemble $\mathbb{R}[X]$ des polynômes.

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau de f.
- 3. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que $f(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$.
 - (b) Soit l'endomorphisme

$$q: \mathbb{R}_n[X] \to \mathbb{R}_n[X], \ P(X) \mapsto XP'(X) - P(X).$$

Écrire la matrice de g dans la base canonique de $\mathbb{R}_n[X]$.

- (c) Déterminer une base de Im(g).
- 4. L'application f est-elle surjective?
- 5. Exprimer $(f \circ f)(P)$ pour tout $P \in \mathbb{R}[X]$.
- 6. Déterminer le noyau de $f \circ f$.
- 1. Soient $(P,Q) \in \mathbb{R}[X]^2$ et $(\lambda, \gamma) \in \mathbb{R}^2$:

$$\begin{array}{lcl} f(\lambda P + \gamma Q) & = & X(\lambda P + \gamma Q)' - (\lambda P + \gamma Q) \\ & = & \lambda (XP' - P) + \gamma (XQ' - Q) \\ & = & \lambda f(P) + \gamma f(Q), \end{array}$$

Donc f est donc linéaire.

2. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$. Alors :

$$\begin{split} P \in \mathrm{Ker}\,(f) &\iff f(P) = 0 &\iff \sum_{k=0}^n (k-1)a_k X^k = 0 \\ &\iff \forall i \neq 1, \ a_i = 0 \iff P = a_1 X \iff P \in \mathrm{Vect}(X). \end{split}$$

On a donc $\operatorname{Ker}(f) = \operatorname{Vect}(X)$.

3. (a) Soit $P \in \mathbb{R}_n[X]$. P est de la forme $\sum_{k=0}^n a_k X^k$. On a alors $f(P) = \sum_{k=0}^n (k-1)a_k X^k \in \mathbb{R}_n[X]$. Par conséquent, $f(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$.

Remarque 1 — Ceci permet de montrer que l'application g de la question suivante est bien définie.

(b) Pour tout $k \in \mathbb{N}, 0 \le k \le n, g(X^k) = (k-1)X^k$. On en déduit la matrice de g dans la base canonique \mathcal{B} :

$$M_{\mathcal{B}}(g) = Diag(-1, 0, 1, 2, \dots, n-1) = \begin{pmatrix} -1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & n-1 \end{pmatrix}$$

- (c) $\operatorname{Im}(g) = \operatorname{Vect}(g(1), g(X), g(X^2) \cdots, g(X^n)) = \operatorname{Vect}(-1, 0, X^2, \cdots, (n-1)X^n) = \operatorname{Vect}(1, X^2, \cdots, X^n)$. La famille $(1, X^2, \cdots, X^n)$ est une famille génératrice de $\operatorname{Im}(g)$. C'est également une famille libre car c'est une sous-famille de la base canonique. C'est donc une base de Im(g).
- 4. L'application f n'est pas surjective car X n'a pas d'antécédent. En effet, pour tout $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$:

$$f(P) = \sum_{k=0}^{n} (k-1)a_k X^k \neq X$$

puisque le coefficient de X dans l'expression f(P) vaut 0.

Remarquons que l'application g n'est pas surjective car dim $\text{Im}(g) = n < \dim \mathbb{R}_n[X] = n + 1$. Donc $\text{Im}(g) \neq \mathbb{R}_n[X]$.

5. Soit $P \in \mathbb{R}[X]$:

$$(f \circ f)(P) = f(f(P)) = X(XP' - P)' - (XP' - P) = X^2P'' - XP' + P$$

6. Soit $P \in \mathbb{R}[X]$. On utilise la formule de la question précédente. Si $P = \sum_{k=0}^{n} a_k X^k$, alors :

$$(f \circ f)(P) = \sum_{k=0}^{n} [k(k-1) - k + 1] a_k X^k = \sum_{k=0}^{n} (k-1)^2 a_k X^k$$

En raisonnant de la même façon que dans la question 1., on trouve $Ker(f \circ f) = Vect(X)$.

Exercice 6 (Bonus). Soit P un élément de $\mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}$, $P(x) \geq 0$. Montrer qu'il existe deux polynômes A et B de $\mathbb{R}[X]$ tels que

$$P = A^2 + B^2.$$

- Soit $x_0 \in \mathbb{R}$. Montrons que si x_0 est racine de P de multiplicité α (non nulle) alors α est pair. P s'écrit $P = (X - x_0)^{\alpha} Q$ où $Q \in \mathbb{R}[X]$
 - P admet un nombre fini de racines donc il existe un voisinage de x_0 de la forme $|x_0 h, x_0 + h|$ sur lequel Q n'admet pas de racines. La continuité de Q vu comme fonction polynomiale assure que Q garde un signe constant. Si α était impair, pour tout $x \in]x_0, x_0 + h[$, P serait du signe de Q et sur $]x_0 - h, x_0[$, P serait de signe opposé, contredisant sa positivité. Donc α est pair.
- \bullet Le coefficient dominant c de P est strictement positif. En effet, on exclut le cas où P est constant et où son coefficient dominant est donc positif par hypothèse. Notons $d = \deg(P)$. Alors $P(x) \sim cx^d$ au voisinage de $+\infty$. Donc si c était strictement négatif, la limite en $+\infty$ de P serait $-\infty$, contredisant sa positivité. Donc c>0.
- Soit $Q \in \mathbb{C}[X]$. Notons $Q = Q_1 + iQ_2$ où $(Q_1, Q_2) \in \mathbb{R}[X]^2$. Alors $Q\overline{Q} = Q_1^2 + Q_2^2$.
- Le décomposition de P dans $\mathbb{C}[X]$ s'écrit donc

$$P = \omega^2 \prod_{i=1}^{p} (X - x_i)^{2\gamma_i} \prod_{j=1}^{q} (X - z_j)^{\beta_j} (X - \overline{z}_j)^{\beta_j},$$

où $\omega^2=x,\,x_1,\ldots,x_n$ sont les racines réelles deux à deux distinctes de P et $z_1,\,\overline{z}_1,\,\ldots,\,z_q,\,\overline{z}_q$ sont les racines complexes non réelles deux à deux distinctes de $P,\,2\gamma_i$ la multiplicité de x_i et β_j celle de z_j et \overline{z}_j . (Rappelons que z est racine de multiplicité m P à coefficients réels et seulement \overline{z} est racine de P de même multiplicité m.) Posons $Q=\prod_{j=1}^q(X-z_j)^{\beta_j}$. Alors $\overline{Q}=\prod_{j=1}^q(X-\overline{z}_j)^{\beta_j}$ et donc

Posons
$$Q = \prod_{i=1}^{q} (X - z_i)^{\beta_j}$$
. Alors $\overline{Q} = \prod_{i=1}^{q} (X - \overline{z}_i)^{\beta_j}$ et donc

$$\prod_{j=1}^{q} (X - z_j)^{\beta_j} (X - \overline{z}_j)^{\beta_j} = Q_1^2 + Q_2^2,$$

où
$$Q_1 = \text{Re}(Q)$$
 et $Q_2 = \text{Im}(Q)$.
Donc $P = P_1^2 + P_2^2$ où $P_1 = \omega \prod_{i=1}^n (X - x_i)^{\gamma_i} Q_1$ et $P_2 = \omega \prod_{i=1}^n (X - x_i)^{\gamma_i} Q_2$.