
1.a) D'après la figure, on peut trouver que la performance de discriminateur PI est mieux que le discriminateur de Hebb, parceque PI est plus proche et semblable du w vrai que le Hebb.

- 1.b) Si on change Papp=2000, les performances des deux discriminateurs sont améliorées, et le discriminateur PI est un peu mieux aussi.
- 1.c) Dans la base non-linéairement séparable, les performances des PI et Hebb sont semblables, on ne peut pas séparer dans cette base(non-linéaire).

 2.a)

C'est une ligne droite.

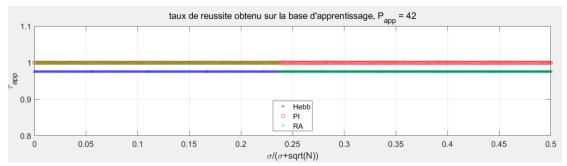
2.b) $\log(\widehat{\sigma_{\tau_g}})$ a une relation linéaire avec $\log(P_{gen})$.

$$\log\left(\widehat{\sigma_{\tau_g}}\right) = -0.0478\log(P_{gen}) + 0.17$$

2.c) Quand $P_{gen}=10,100,1000$, la relation est bien vérifiée, quand $P_{gen}=10000$, la relation a un peu de déviation.

2.d)
$$\sigma_{\tau g} = \sqrt{\frac{\tau_g(1-\tau_g)}{P_{gen}}}$$

Question :Pourquoi on peut utiliser τ_g pour remplacer $\mu_{\tau g}$ comme une relation d'estimateur de l'écart type.

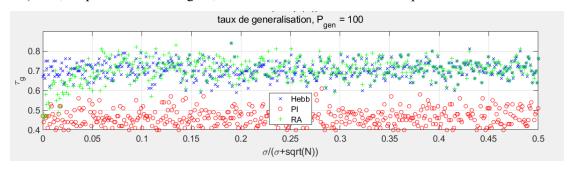

3.a) Pour τ_{app} PI est mieux que Hebb, mais quand P_{app} augmente, la performance de PI diminue. Pour τ_g , quand P_{app} augmente, la performance améliore mais a une réduction $P_{app}=42\,$ d'après la figure.

Question :pourquoi la performance de PI diminue quand P_{app} augmente? Pourquoi il y a une réduction évidente?

3.b) Quand P_{gen} =100,1000,10000,100000..., les points sont plus serrés, et ils sont placés dans une certaine largeur.

Question: Je ne comprend comment on trouve s'il y a de bruit dans la figure? Comment on peut connaître le bruit est plus ou moins?

4.a)


Quand σ est petit ,la performance de RA est comme PI, mais quand σ est grand, la performance de RA est comme Hebb.

Pour τ_{app} , si σ est petit, RA fonctionne comme PI, si σ est grand, RA fonctionne comme Hebb.

4.b) Pour la base d'apprendissage, quand σ est petit ,la performance de RA est comme PI, quand σ est grand, la performance de RA est comme Hebb.

Pour la base de géneralisation, RA fonctionne comme Hebb, pour tous les σ .

4.c) Oui, on peut voir sur la figure, le taux de réussite varié beaucoup avec la valeur de σ .

