Sébastien SY1924130 Électronique 1 mai 2020

Étude de l'amplificateur opérationnel AD820 Rapport du Devoir 1

Ce rapport décrit une étude sur l'amplificateur opérationnel AD820.

Lancer la simulation et vérifier que le signal est amplifié correctement en tension en observant sur la même fenêtre graphique la tension d'entrée et la tension de sortie

On réalise le schéma d'un amplificateur inverseur avec les conditions et les propriétés requises. Le schéma est montré ci-dessous:

On lance la simulation et on examine les tensions V_{out} et V_{in} . Le résultat graphique est montré ci-dessous:

On peut voir sur la figure que V_{out} a une amplitude de 10 et V_{in} a une amplitude de 1. Ils ont de mêmes périodes mais des signes opposées. Le signal est donc amplifié correctement.

En changeant l'amplitude du signal, mettre en évidence le phénomène de saturation. La valeur de saturation est-elle cohérente ?

On change l'amplitude du signal, c'est-à-dire l'amplitude de V_{in} , en 1,5V, 2V et 4V. Les résultats graphique sont montrés ci-dessous:

Amplitude de $V_{in} = 4V$

On peut voir que V_{out} , le signal qui aurait dû être 10 fois amplifié et inversé de V_{in} , sature toujours à 15V, ce qui est la valeur de V_{cc} . La valeur de saturation est cohérente.

L'amplitude d'entrée est à nouveau de 1V. En diminuant la résistance de charge, observer la distorsion du signal de sortie et en déduire le courant maximal de sortie de l'amplificateur opérationnel AD820. Vérifier que cette valeur correspond aux données constructeur de la fiche technique

On diminue la résistance de charge R_3 jusqu'à 300 Ω , 200 Ω , 150 Ω , 100 Ω , 50 Ω , 40 Ω , 30 Ω , 20 Ω et 10 Ω . À partir de 200 Ω , le signal de sortie commence à saturer. Pour chaque résistance de charge, on divise la tension maximale du signal de sortie par cette résistance pour obtenir le courant de sortie maximale dans chaque cas.

$R_3(\mathbf{\Omega})$	Valeur saturée de V_{out} (V)	Courant de sortie maximale (mA)	
200		7,48	37,4
150		5,73	38,2
100		4,01	40,1
50		2,10	42
40		1,68	42
30		1,29	43
20		0,87	43,5
10		0,44	44

On peut voir de la table que le courant de sortie maximale augmente quand R_3 diminue, et sa valeur maximale est 44mA. Cette augmentation peut s'expliquer par une diminution du courant traversant R_2 , conformément à la loi d'Ohm. Dans la fiche technique, la valeur de « Short-Circuit Current » est 45mA, ce qui quasiment correspond à la valeur calculée ici.

Avec une résistance de charge de 1M Ω , réduire les résistances de l'amplificateur inverseur d'un facteur 10 (en conservant le gain G_{ν}). Que se passe t-il ? Expliquer

On réduit R_2 à 100 Ω et R_1 à 10 Ω , en conservant le gain G_v . Le résultat graphique est montré ci-dessous.

On peut voir la déformation du signal de sortie, qui présente une saturation à 4,5V. En effet, si l'on divise cette valeur par $R_2 = 100\Omega$, on obtient le courant traversant R_2 qui est égal à 45mA, ce qui correspond au courant maximale de sortie de l'amplificateur. Cela signifie que la déformation qu'on observe est causée par la saturation du courant de sortie, ce qui est causée par une valeur trop petite de R_2 .

Estimer alors le slew rate 1 et le comparer à la fiche technique du constructeur

On modifie le schéma et les paramètres en fonction des besoins du sujet. Le nouveau schéma est montré ci-dessous:

On lance la simulation et on mesure le temps pour que la tension du signal de sortie atteint la tension attendue: -10V. Le résultat est montré ci-dessous.

Cursor	1:		
	V	(vout)	
Horz:	2.8969441µs	Vert:	-9.9901573V
Cursor	2:		
Horz:	N/A	Vert:	N/A
Diff(Cu	rsor 2- Cursor 1):		
	N/A	Vert:	N/A
Horz:			

On peut voir que pour atteindre -10V (La valeur mesurée possède une erreur inévitable) il prend 2,90µs. De la figure, la tension varie quasi-linéairement pendant cette période. Le slew rate mesuré de l'amplificateur est donc 3,45V/µs. Dans la fiche technique, le slew rate annoncé est 3V/µs, ce qui n'est pas très différent de la valeur mesurée.

Lancer la simulation et observer la sortie de l'amplificateur. Estimer la bande passante à -3 dB et la comparer à la fiche technique

On modifie le signal d'entrée et la commande de simulation en fonction des besoins du sujet. Le nouveau schéma est montré ci-dessous.

On lance la simulation et on mesure la bande passante à -3dB. Le résultat est montré cidessous.

100 1	a .e	-	NAL DEFENSION			
<u> </u>						
0dB			(vout)			180°
-3dB						
6.10					11	-140°
-60B-						-120°
-9dB					1	1000
12dB						- 80°
1.5.10						600
TOOP						- 60-
18dB-						- 40°
21dB						- 20°
						- 0°
24dB-						
27dB-						40°
30dB						-60°
10Hz	100Hz	1KHz	10KHz	100KHz	1MHz	10MHz

Cursor	1:			
		V(vout)		
Freq:	1.6791112MHz	Mag:	-3.0073377dB	0
		Phase:	89.566939°	
	Grou	p Delay:	118.76114ns	
Cursor	2:			
Freq:	N/A	Mag:	N/A	
		Phase:	N/A	
	Grou	p Delay:	N/A	
	Delta Frequency	Ra	tio(Cursor 2/Cursor 1)	6
dFreq:	N/A	Mag:	N/A	
		Phase:	N/A	
	Grou	p Delay:	N/A	

On peut voir de la figure que l'amplificateur agit comme un filtre passe-bas. La bande passante à -3dB mesurée est 1,68MHz. Dans la fiche technique, la bande passante à -3dB (Unity-gain bandwidth) annoncée est 1,8MHz, ce qui n'est pas très différente de la valeur mesurée.

Doubler le gain de l'amplificateur. Estimer à nouveau la bande passante a -3 dB et vérifier que le produit gain-bande est constant

On double le gain de l'amplificateur en changeant la valeur de R_2 à 2000 Ω . On lance la simulation et on mesure la bande passante à -3dB. Le résultat est montré ci-dessous.

On peut voir de la figure que le gain maximum est 6,02, ce qui correspond à $20log_{10}(2)$. On s'intéresse alors à la fréquence pour le gain à 3,02dB, ce qui correspond à la bande passante à -3dB. Le résultat est montré ci-dessous.

Cette fois-ci la bande passante à -3dB mesurée est 0,89MHz. Le produit gain-bande est alors $2 \times 0,89$ MHz = 1,78MHz, ce qui n'est pas très différent de $1 \times 1,68$ MHz = 1,68MHz, le produit gain-bande de gain = 1.

Lancer la simulation et observer le signal de sortie. Dans la fenêtre graphique faire un clic-droit puis « View → FFT » pour visualiser le spectre du signal. Mesurer alors la différence de niveau en dB entre le fondamental à 10 kHz et l'harmonique de rang 3 à 30 kHz. Comparer ce résultat à la fiche technique

On construit un montage suiveur et on change les paramètres en fonctions des besoins du sujet. Le nouveau schéma est montré ci-dessous.

On lance la simulation et on visualise le signal de sortie ainsi que son spectre. On mesure alors les niveau de 10kHz et de 30kHz. Les résultats sont montrés ci-dessous.

Signal de sortie

Spectre du signal de sortie

00		Devoir1.fft		
Cursor 1:				
		V(vout)		
Freq:	10KHz	Mag:	16.986717dB	0
		Phase:	-90.281194°	
	Grou	p Delay:	-244.2323µs	
Cursor 2	:			
		V(vout)		
Freq:	30KHz	Mag:	-80.028696dB	0
		Phase:	178.58661°	
	Grou	p Delay:	5.0580841µs	
	Delta Frequency	Ra	tio(Cursor 2/Cursor 1)
Freq:	20KHz	Mag:	-97.015412dB	
		Phase:	-91.132199°	
	Grou	p Delay:	249 2903805	

Valeurs des niveaux de 10kHz et de 30kHz

La distortion harmonique mesurée, c'est-à-dire la différence de niveau en dB entre le fondamental à 10 kHz et l'harmonique de rang 3 à 30 kHz, est -97,02dB. Dans la fiche technique, la distortion harmonique pour $Vcc = \pm 15$ V, $R_3 = 10$ k Ω , f = 10kHz est -85dB, ce qui n'est pas très différente à notre valeur calculée.