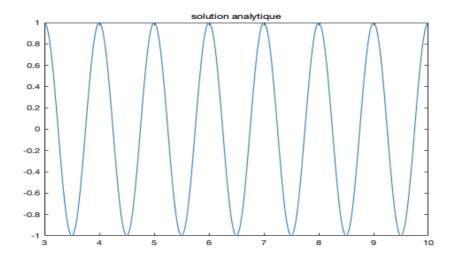
Bonjour monsieur, j'ai mis tous les réponses à DM1, DM2 et DM3 dans le même document :

Retrouver l'équation du mouvement du pendule simple

Le process de démonstration est comme ci-dessous:

Pour un pendule simple, on a:
- (6c = 2θ
5p = mgd cost + Cte
(SW=0
avec l'équation de Lagrange $\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{x}_i} \right] - \frac{\partial L}{\partial \dot{x}_i} = 0$
$L = E_c - E_p = \frac{1}{2} \dot{\theta}^2 + mgdcos\theta - cte$ $SW = \underbrace{\mathbb{X}}_{i=1}^{N} Q_i SX_i = 0 \Rightarrow Q_i = 0$
SW = \(\omega \
$\frac{\partial L}{\partial \theta} = -mgd \sin \theta \frac{d}{dt} \left[\frac{\partial L}{\partial \dot{\theta}} \right] = L\dot{\theta}$
Done I B + mgdsin0 = 0
Done I 0 + mgdsin0 = 0 L'ast l'équation du mouvement.


Oscillateur conservative linéaire à un degré de liberté

1.1

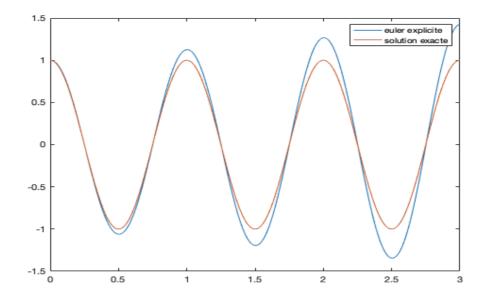
```
clear all;
%déterminer la solution de l'équation
w0 = 2*pi;
q0 = 1;
Dq0 = 0;
T0 = 3;
syms t
eq = 'D2q+w0^2*q=0';
q(t) = simplify(dsolve(eq,'q(0)=1','Dq(0)=0'))

T = linspace(0,T0,500);
q = exp(-T*w0*i)/2 + exp(T*w0*i)/2;
plot(T,q);
title('solution analytique');
```

```
q(t) = cos(t*w0)
```


1.2

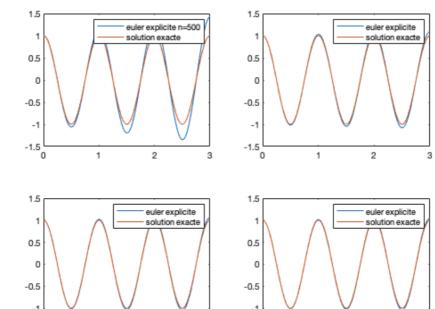
```
clf;
dq = diff(q,t)
%calculer numériquement E*
Eetoile = 1/2*(dq^2+w0^2*q^2)
```


```
dq(t) =
-w0*sin(t*w0)

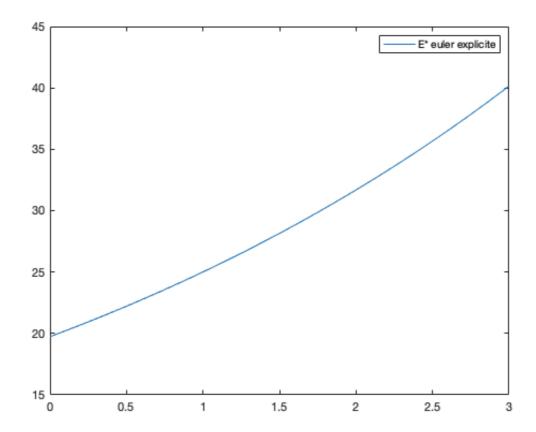
Eetoile(t) =
(2778046668940015*cos(t*w0)^2)/140737488355328 + (w0^2*sin(t*w0)^2)/2
```

2.1 Euler explicite

2.2


```
clf;
n = 500;
dt = T0/n;
t = 0:dt:T0;
A = [1,dt;-w0^2*dt,1];
U1(:,1) = [q0;Dq0];
for j = 1:length(t)-1
        U1(:,j+1) = A*U1(:,j);
end
plot(t,U1(1,:))
hold on;
plot(t,cos(2*pi*t));
legend('euler explicite','solution exacte')
```


-1.5 L


1

```
clf;
subplot(2,2,1);
plot(t,U1(1,:));
hold on;
plot(t,cos(2*pi*t));
legend('euler explicite n=500','solution exacte')
%on change le pas de temps
for i=2:4
   n = 1000*i;
    dt = T0/n;
    t = 0:dt:T0;
   U1(:,1) = [q0;Dq0];
    A = [1, dt; -w0^2*dt, 1];
        for j=1:length(t)-1
            U1(:,j+1) = A*U1(:,j);
        end
    subplot(2,2,i);
    plot(t,U1(1,:));
    hold on;
    plot(t,cos(2*pi*t));
    legend('euler explicite','solution exacte')
end
```


3

-1.5 0 Quand on choisit n=500, on peut obtenir E* comme:

Si on change le pas de temps, E* se change aussi. Parce que quand dt devient plus petit, ce résultat devient plus près avec la solution exacte.

```
for i=1:100
    n = 500*i;
    dt = T0/n;
    t = 0:dt:T0;
    U1(:,1) = [q0;Dq0];
    A1 = [1,dt;-w0^2*dt,1];
    vp = eig(A1)
end
```

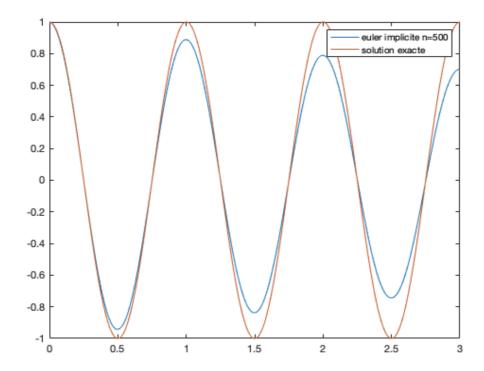
On change le pas de temps, et on peut obtient que c'est instable quand n est petit. Si on changera n, la valeur propre de la matrice A1 se change aussi.

```
vp =
    1.0000 + 0.0377i
1.0000 - 0.0377i

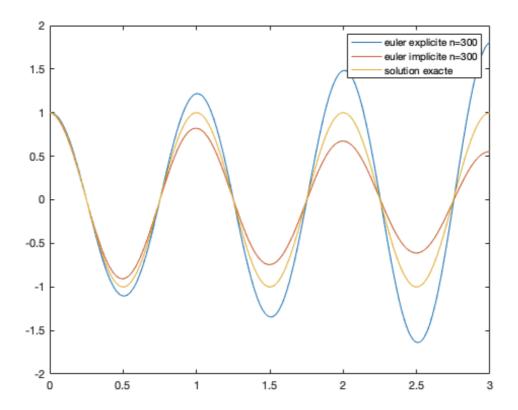
vp =
    1.0000 + 0.0188i
1.0000 - 0.0188i

vp =
    1.0000 + 0.0126i
1.0000 - 0.0126i

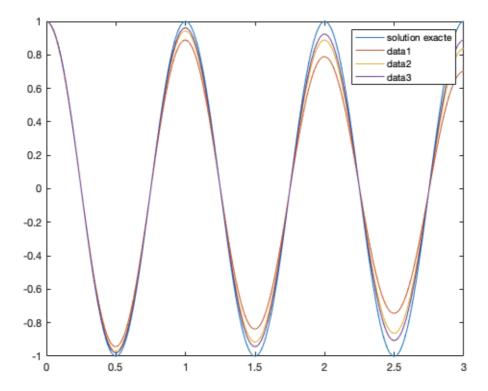
vp =
    1.0000 + 0.0094i
1.0000 - 0.0094i
1.0000 - 0.0094i
```

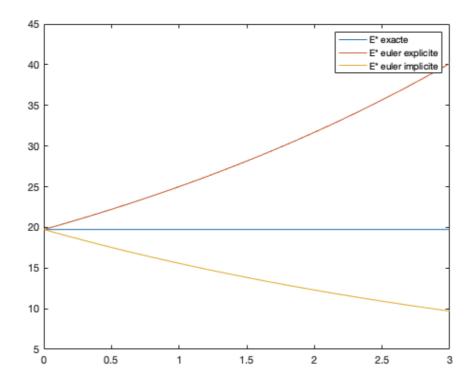

Mais quand n est assez grand (>30000), c'est stable. La valeur propre tend vers une valeur fixée.

```
vp =
    1.0000 + 0.0004i
    1.0000 - 0.0004i


vp =
    1.0000 + 0.0004i
1.0000 - 0.0004i

vp =
    1.0000 + 0.0004i
1.0000 - 0.0004i
```


3.1 Euler implicite


```
clf;
%on choisit n=300 pour dt=0.01
n = 300;
dt = T0/n;
t = 0:dt:T0;
A1 = [1,dt;-w0^2*dt,1];
U1(:,1) = [q0;Dq0];
A2 = [1,-dt;w0^2*dt,1];
U2(:,1) = [q0;Dq0];
for j = 1: length(t)-1
   U1(:,j+1) = A1*U1(:,j);
U2(:,j+1) = inv(A2)*U2(:,j);
end
plot(t,U1(1,:));
hold on;
plot(t,U2(1,:));
hold on;
plot(t,cos(w0*t))
legend('euler explicite n=300','euler implicite n=300','solution exacte')
```



```
clf;
t = linspace(0,T0,500);
plot(t,cos(2*pi*t));
hold on;
legend('solution exacte');
%on change le pas de temps
for i=1:3
     n = 500*i;
     dt = T0/n;
     t = 0:dt:T0;
     \label{eq:u2} \begin{array}{ll} \text{U2}\,(:,1) &=& [\,q0\,;\text{Dq}0\,]\,; \\ \text{A2} &=& [\,1,-\text{dt}\,;\text{w0}^2\text{+dt},1\,]\,; \end{array}
           for j=1:length(t)-1
                 U2(:,j+1) = inv(A2)*U2(:,j);
           end
      string = num2str(n);
      plot(t,U2(1,:));
      hold on;
end
```


On peut trouve que plus le pas de temps est petit, plus l'atténuation des oscillations est faible.

Après la figure, on peut voir que la valeur d'E* d'Euler explicite est plus grande que celui exacte, lors que la valeur d'E* d'Euler implicite est plus petite.

```
for i=1:100
    n = 500*i;
    dt = T0/n;
    t = 0:dt:T0;
    U2(:,1) = [q0;Dq0];
    A2 = [1,-dt;w0^2*dt,1];
    vp = eig(inv(A2))
end
```

On change le pas de temps, et on peut obtient que c'est instable quand n est petit. Si on changera n, la valeur propre de la matrice A1 se change aussi.

```
vp =
    0.9986 + 0.0376i
0.9986 - 0.0376i

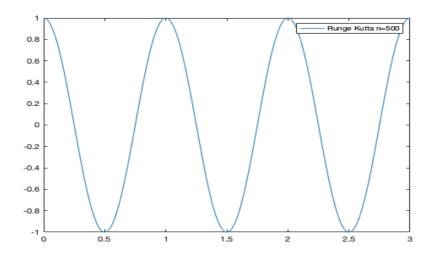
vp =
    0.9996 + 0.0188i
0.9996 - 0.0188i

vp =
    0.9998 + 0.0126i
0.9998 - 0.0126i

vp =
    0.9999 + 0.0094i
0.9999 - 0.0094i
```

Mais quand n est assez grand (>30000), c'est stable. La valeur propre tend vers une valeur fixée.

```
vp =
    1.0000 + 0.0004i
1.0000 - 0.0004i

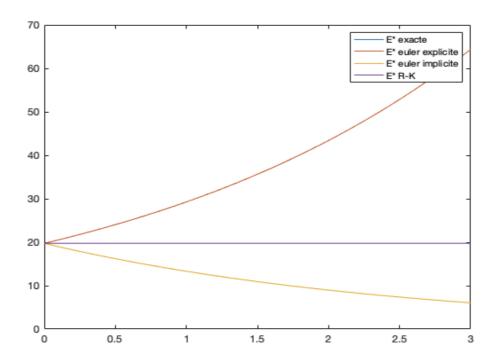

vp =
    1.0000 + 0.0004i
1.0000 - 0.0004i
1.0000 - 0.0004i
```

L'équation du mouvement (1) =

$$\ddot{q} = -w^2q$$
 $\begin{vmatrix} \dot{q} \\ \ddot{q} \end{vmatrix} = \begin{bmatrix} 0 & 1 \\ -w^2 & 0 \end{bmatrix} \begin{vmatrix} \dot{q} \\ \dot{q} \end{vmatrix}$
Soit \dot{k} Lt) = \ddot{B} \dot{U} Lt)

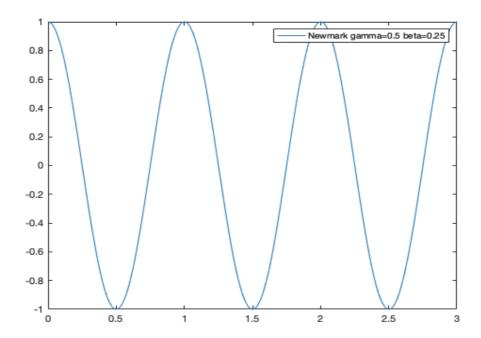
4.2

```
clf;
n = 500;
dt = T0/n;
t = 0:dt:T0;
B = [0,1;-w0^2,0];
Urk(:,1) = [q0;Dq0];
%la méthode de Runge-Kutta
for i = 1: length(t)-1
   k1 = B*Urk(:,i);
    k2 = B*(Urk(:,i)+1/2*dt*k1);
    k3 = B*(Urk(:,i)+1/2*dt*k2);
    k4 = B*(Urk(:,i)+dt*k3);
    K = 1/6*(k1+2*k2+2*k3+k4);
    Urk(:,i+1) = Urk(:,i)+K*dt;
plot(t, Urk(1,:))
legend('Runge Kutta n=500')
```

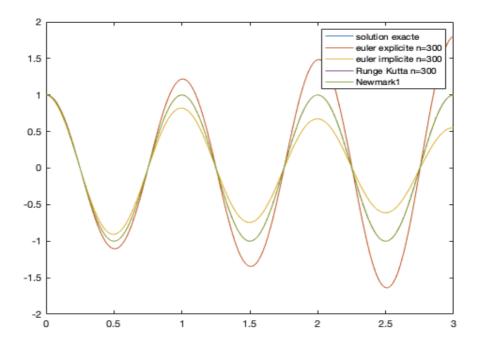



```
clf;
plot(t,cos(w0*t));
hold on;
plot(t,U1(1,:));
hold on;
plot(t,U2(1,:));
hold on;
plot(t,U2(1,:));
hold on;
plot(t,Urk(1,:));
legend('solution exacte','euler explicite n=300','euler implicite n=300','Runge Kutta n=300')
```


On peut obtient selon cette figure : le résultat de la méthode de R-K est plus précise que les deux autres dans la même condition.

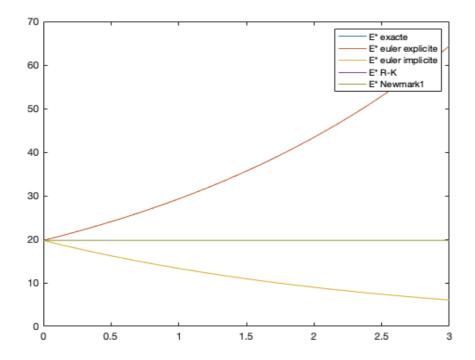

```
clf;
Eetoile = [];
Eetoile1 = [];
Eetoile2 = [];
Eetoile3 = [];
for i = 1:length(t)
     Eetoile(i) = 2*pi^2;
     \texttt{Eetoile1(i)} \ = \ 1/2 * (\texttt{U1(2,i)} * \texttt{U1(2,i)} + \texttt{w0^2} * \texttt{U1(1,i)} * \texttt{U1(1,i)});
     \label{eq:etoile2} \text{Eetoile2(i)} \ = \ 1/2 \, \text{*} \, (\text{U2(2,i)} \, \text{*} \text{U2(2,i)} \, \text{+} \text{w0^2} \, \text{*} \text{U2(1,i)} \, \text{*} \text{U2(1,i))};
      Eetoile3(i) = 1/2*(Urk(2,i)*Urk(2,i)+w0^2*Urk(1,i)*Urk(1,i));
clf;
plot(t, Eetoile);
hold on;
plot(t, Eetoile1);
hold on;
plot(t, Eetoile2);
hold on;
plot(t, Eetoile3);
legend('E* exacte','E* euler explicite','E* euler implicite','E* R-K');
```


On peut obtient selon cette figure : la quantité E* calculée par la méthode de R-K est la même avec le résultat exacte, donc cette méthode est plus precise pour notre problème.


5.1 Résolution avec un schéma de Newmark gamma=0,5 beta=0.25

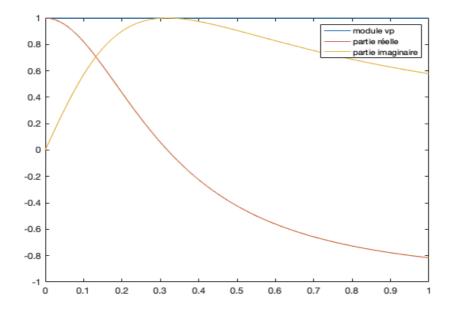
5.1.1

5.1.2


```
clf;
plot(t,cos(w0*t));
hold on;
plot(t,U1(1,:));
hold on;
plot(t,U2(1,:));
hold on;
plot(t,U2(1,:));
hold on;
plot(t,Urk(1,:));
hold on;
plot(t,Urk(1,:));
hold on;
```

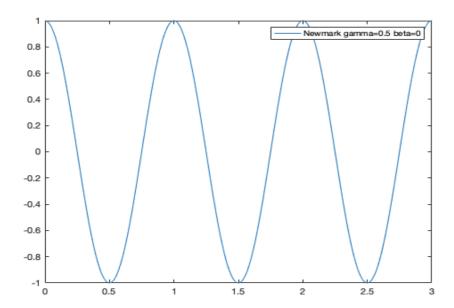

On peut obtient selon cette figure : le résultat de la méthode Newmark est tant précise que la méthode de R-K, mieux que les deux autres dans la même condition.

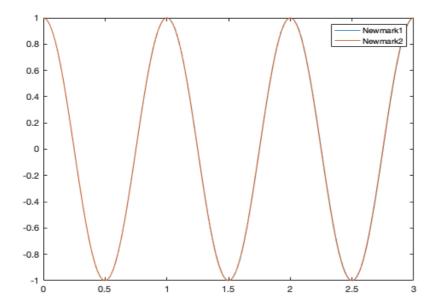
5.1.3


```
clf;
Eetoile = [];
Eetoile1 = [];
Eetoile2 = [];
Eetoile3 = [];
Eetoile4 = [];
for i = 1:length(t)
   Eetoile(i) = 2*pi^2;
   Eetoile1(i) = 1/2*(U1(2,i)*U1(2,i)+w0^2*U1(1,i)*U1(1,i));
   Eetoile2(i) = 1/2*(U2(2,i)*U2(2,i)+w0^2*U2(1,i)*U2(1,i));
   {\tt Eetoile3(i) = 1/2*(Urk(2,i)*Urk(2,i)+w0^2*Urk(1,i)*Urk(1,i));}
   clf;
plot(t, Eetoile);
hold on;
plot(t, Eetoile1);
hold on;
plot(t, Eetoile2);
hold on;
plot(t, Eetoile3);
hold on;
plot(t, Eetoile4);
legend('E* exacte','E* euler explicite','E* euler implicite','E* R-K','E* Newmark1');
```


On peut voire que avec le schéma de Newmark, gama=0.5 et beta=0.25, il n'y a pas d'atténuation de E* comme le schéma R-K.

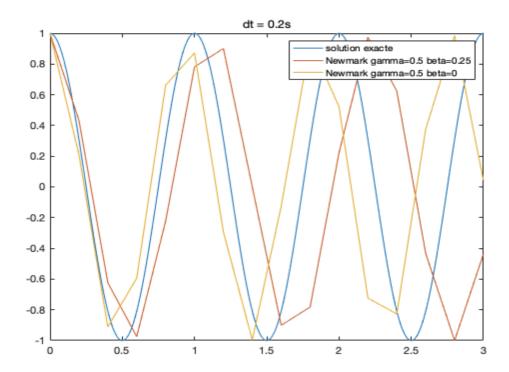
5.1.4


```
clf;
gamma1 = 0.5;
beta1 = 0.25;
dt1 = 0:0.01:1;
vpE1 = [0;0];
module_vpE1 = [];
for i = 1:length(dt1)
   C1 = [1+beta1*dt1(i)^2*w0^2,0;gamma1*dt1(i)*w0^2,1];
   D1 = [1-(0.5-beta1)*dt1(i)^2*w0^2,dt1(i);-(1-gamma1)*dt1(i)*w0^2,1];
   E1 = inv(C1)*D1;
   vpE1(:,i) = eig(E1);
   module_vpE1(i) = sqrt((real(vpE1(1,i)))^2+(imag(vpE1(1,i)))^2);
plot(dt1, module_vpE1);
hold on;
plot(dt1, real(vpE1(1,:)));
hold on;
plot(dt1,imag(vpE1(1,:)));
legend('module vp','partie réelle','partie imaginaire');
```

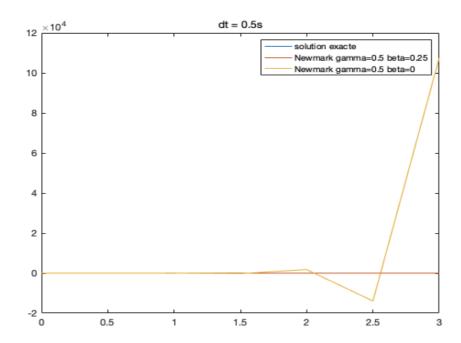


Pour conclure, on peut dire que bien que le pas de temps soit plus grand, le module des valeurs propres de la matrice d'amplification reste toujours 1.

5.2 Résolution avec un schéma de Newmark gamma=0,5 beta=0

5.2.1

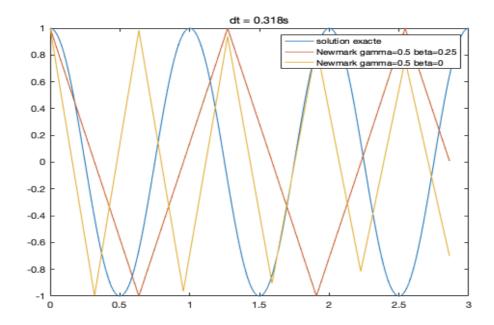

```
clf;
plot(t,Unewm1(1,:));
hold on;
plot(t,Unewm2(1,:));
legend('Newmark1','Newmark2');
```

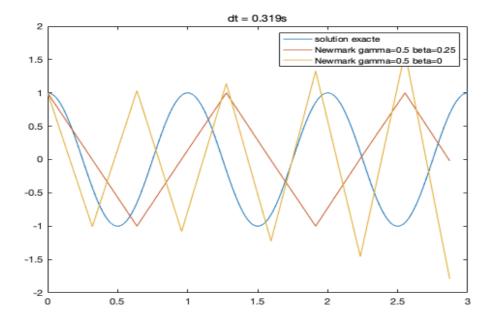

Je ne crois pas qu'il y a de différence entre ces deux résultats quand dt = 0.01s.


Quand on choisit dt = 0.2s, on peut obtient :

```
clf;
%quand dt=0.2s
dt1 = 0.2;
t1 = 0:dt1:T0;
gamma1 = 0.5;
beta1 = 0.25;
gamma2 = 0.5;
beta2 = 0;
C1 = [1+beta1*dt1^2*w0^2,0;gamma1*dt1*w0^2,1];
D1 = [1-(0.5-beta1)*dt1^2*w0^2,dt1;-(1-gamma1)*dt1*w0^2,1];
E1 = inv(C1)*D1;
Unewm1(:,1) = [q0;Dq0];
{\tt C2 = [1+beta2*dt1^2*w0^2,0;gamma2*dt1*w0^2,1];}
D2 = [1-(0.5-beta2)*dt1^2*w0^2,dt1;-(1-gamma2)*dt1*w0^2,1];
E2 = inv(C2)*D2;
Unewm2(:,1) = [q0;Dq0];
for i = 1:length(t1)-1
    Unewm1(:,i+1) = E1*Unewm1(:,i);
Unewm2(:,i+1) = E2*Unewm2(:,i);
end
plot(t,cos(w0*t));
hold on;
plot(t1,Unewm1(1,:));
hold on;
plot(t1,Unewm2(1,:));
legend('solution exacte','Newmark gamma=0.5 beta=0.25','Newmark gamma=0.5 beta=0.25');
title('dt = 0.5s')
```


Si dt = 0.5s:


```
clf;
%quand dt=0.5s
dt1 = 0.5;
t1 = 0:dt1:T0;
gamma1 = 0.5;
beta1 = 0.25;
gamma2 = 0.5;
beta2 = 0;
C1 = [1+beta1*dt1^2*w0^2,0;gamma1*dt1*w0^2,1];
D1 = [1-(0.5-beta1)*dt1^2*w0^2,dt1;-(1-gamma1)*dt1*w0^2,1];
E1 = inv(C1)*D1;
Unewm1(:,1) = [q0;Dq0];
C2 = [1+beta2*dt1^2*w0^2,0;gamma2*dt1*w0^2,1];
D2 = [1-(0.5-beta2)*dt1^2*w0^2, dt1; -(1-gamma2)*dt1*w0^2, 1];
E2 = inv(C2)*D2;
Unewm2(:,1) = [q0;Dq0];
for i = 1: length(t1)-1
    Unewm1(:,i+1) = E1*Unewm1(:,i);
    Unewm2(:,i+1) = E2*Unewm2(:,i);
plot(t,cos(w0*t));
hold on;
plot(t1,Unewm1(1,:));
hold on;
plot(t1,Unewm2(1,:));
legend('solution exacte','Newmark gamma=0.5 beta=0.25','Newmark gamma=0.5 beta=0');
title('dt = 0.5s')
```



Pour conclure, on doit choisir un pas de temps assez petit, sinon le résultat de Newmark, gamma=0.5 et beta=0, devenira divergent.

5.2.4 On utilise la méthode de dichotomie, et on peut obtenir que le pas de temps critique est environ 0.3185.

Quand dt = 0.318s:

Quand dt = 0.319s:

Donc cela est peut-être $1/\pi$.